Matching Items (20)

134978-Thumbnail Image.png

The Future of the Phoenix Metropolitan Area: An Analysis of the Socioeconomic Implications of Desert, Green, or Expanded Cities

Description

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.

Contributors

Created

Date Created
  • 2016-12

136333-Thumbnail Image.png

Impact of Material Properties and Urban Geometry on Urban Heat Island Effect

Description

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall albedo, ground albedo, a combination of all three albedos, roof emissivity, wall emissivity, ground emissivity, a combination of all three emissivities, and normalized building height as independent variables. Dependent variables included canyon air temperature, effective ground temperature, effective roof temperature, effective wall temperature, and sensible heat flux. It was found that emissivity does play a part in reducing the different dependent variables; however, typically emissivity values are already within a preferred range that not much can be done with them. Normalized building height has a minor impact but the impact that it does have upon the different variables is lessened with lower values of the normalized building height. Increasing the wall albedo decreased the canyon air temperature and the effective wall temperature the most compared to the other variables when considering expenses. An increase in roof albedo reduced effective roof temperature and sensible heat flux the most when taking into consideration the cost of changing the albedo of the surface. Larger values of ground albedo helped to reduce the effective ground temperature more than the other variables considered when a budget is necessary.

Contributors

Created

Date Created
  • 2015-05

152132-Thumbnail Image.png

Modeling soil moisture dynamics of landscape irrigation in desert cities

Description

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there are societal and environmental factors that make mesic landscaping, including shade trees and grass lawns, a common choice for residential yards. In either case, there is potential for water savings through irrigation schedules based on fluxes affecting soil moisture in the active plant rooting zone. In this thesis, a point-scale model of soil moisture dynamics was applied to two urban sites in the Phoenix area: one with xeric landscaping, and one with mesic. The model was calibrated to observed soil moisture data from irrigated and non-irrigated sensors, with local daily precipitation and potential evapotranspiration records as model forcing. Simulations were then conducted to investigate effects of irrigation scheduling, plant stress parameters, and precipitation variability on soil moisture dynamics, water balance partitioning, and plant water stress. Results indicated a substantial difference in soil water storage capacity at the two sites, which affected sensitivity to irrigation scenarios. Seasonal variation was critical in avoiding unproductive water losses at the xeric site, and allowed for small water savings at the mesic site by maintaining mild levels of plant stress. The model was also used to determine minimum annual irrigation required to achieve specified levels of plant stress at each site using long-term meteorological records. While the xeric site showed greater potential for water savings, a bimodal schedule consisting of low winter and summer irrigation was identified as a means to conserve water at both sites, with moderate levels of plant water stress. For lower stress levels, potential water savings were found by fixing irrigation depth and seasonally varying the irrigation interval, consistent with municipal recommendations in the Phoenix metropolitan area. These results provide a deeper understanding of the ecohydrologic differences between the two types of landscape treatments, and can assist water and landscape managers in identifying opportunities for water savings in desert urban areas.

Contributors

Agent

Created

Date Created
  • 2013

153883-Thumbnail Image.png

Optimization/simulation model for determining real-time optimal operation of river-reservoirs systems during flooding conditions

Description

A model is presented for real-time, river-reservoir operation systems. It epitomizes forward-thinking and efficient approaches to reservoir operations during flooding events. The optimization/simulation includes five major components.

A model is presented for real-time, river-reservoir operation systems. It epitomizes forward-thinking and efficient approaches to reservoir operations during flooding events. The optimization/simulation includes five major components. The components are a mix of hydrologic and hydraulic modeling, short-term rainfall forecasting, and optimization and reservoir operation models. The optimization/simulation model is designed for ultimate accessibility and efficiency. The optimization model uses the meta-heuristic approach, which has the capability to simultaneously search for multiple optimal solutions. The dynamics of the river are simulated by applying an unsteady flow-routing method. The rainfall-runoff simulation uses the National Weather Service NexRad gridded rainfall data, since it provides critical information regarding real storm events. The short-term rainfall-forecasting model utilizes a stochastic method. The reservoir-operation is simulated by a mass-balance approach. The optimization/simulation model offers more possible optimal solutions by using the Genetic Algorithm approach as opposed to traditional gradient methods that can only compute one optimal solution at a time. The optimization/simulation was developed for the 2010 flood event that occurred in the Cumberland River basin in Nashville, Tennessee. It revealed that the reservoir upstream of Nashville was more contained and that an optimal gate release schedule could have significantly decreased the floodwater levels in downtown Nashville. The model is for demonstrative purposes only but is perfectly suitable for real-world application.

Contributors

Agent

Created

Date Created
  • 2015

156960-Thumbnail Image.png

On the Statistical and Scaling Properties of Observed and Simulated Soil Moisture

Description

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.

Contributors

Agent

Created

Date Created
  • 2018

154048-Thumbnail Image.png

Optimization model for design of vegetative filter strips for stormwater management and sediment control

Description

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model

Contributors

Agent

Created

Date Created
  • 2015

151294-Thumbnail Image.png

Relative efficiency of surface energy budgets over different land covers

Description

The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct

The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse due to relatively high cost and practical difficulties in logistics and deployment. As a result, data is temporally and spatially limited and is inadequate to be used for researches at large scales, such as regional and global climate modeling. Besides field measurements, an alternative way is to estimate turbulent fluxes based on the intrinsic relations between surface energy budget components, largely through thermodynamic equilibrium. These relations, referred as relative efficiency, have been included in several models to estimate the magnitude of turbulent fluxes in surface energy budgets such as latent heat and sensible heat. In this study, three theoretical models based on the lumped heat transfer model, the linear stability analysis and the maximum entropy principle respectively, were investigated. Model predictions of relative efficiencies were compared with turbulent flux data over different land covers, viz. lake, grassland and suburban surfaces. Similar results were observed over lake and suburban surface but significant deviation is found over vegetation surface. The relative efficiency of outgoing longwave radiation is found to be orders of magnitude deviated from theoretic predictions. Meanwhile, results show that energy partitioning process is influenced by the surface water availability to a great extent. The study provides insight into what property is determining energy partitioning process over different land covers and gives suggestion for future models.

Contributors

Agent

Created

Date Created
  • 2012

155737-Thumbnail Image.png

Impacts of land use and land cover change on urban hydroclimate of Colorado River Basin

Description

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.

Contributors

Agent

Created

Date Created
  • 2017

154963-Thumbnail Image.png

Improvement in convective precipitation and land surface prediction over complex terrain

Description

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their impact on convective precipitation by conducting numerical modeling experiments at multiple scales over the North American Monsoon (NAM) region. Specifically, the following scientific questions are addressed: (1) how do land surface conditions evolve during the monsoon season, and what are their main controls?, (2) how do the diurnal cycles of surface energy fluxes vary during the monsoon season for the major ecosystems?, and (3) what are the impacts of surface soil moisture and vegetation condition on convective precipitation?

Hydrologic simulation using the TIN-based Real-time Integrated Basin Simulator (tRIBS) is firstly carried out to examine the seasonal evolution of land surface conditions. Results reveal that the spatial heterogeneity of land surface temperature and soil moisture increases dramatically with the onset of monsoon, which is related to seasonal changes in topographic and vegetation controls. Similar results are found at regional basin scale using the uncoupled WRF-Hydro model. Meanwhile, the diurnal cycles of surface energy fluxes show large variation between the major ecosystems. Differences in both the peak magnitude and peak timing of plant transpiration induce mesoscale heterogeneity in land surface conditions. Lastly, this dissertation examines the upscale effect of land surface heterogeneity on atmospheric condition through fully-coupled WRF-Hydro simulations. A series of process-based experiments were conducted to identify the pathways of soil moisture-rainfall feedback mechanism over the NAM region. While modeling experiments confirm the existence of positive soil moisture/vegetation-rainfall feedback, their exact pathways are slightly different. Interactions between soil moisture, vegetation cover, and rainfall through a series of land surface and atmospheric boundary layer processes highlight the strong land-atmosphere coupling in the NAM region, and have important implications on convective rainfall prediction. Overall, this dissertation advances the study of complex land surface processes over the NAM region, and made important contributions in linking complex hydrologic, ecologic and atmospheric processes through numerical modeling.

Contributors

Agent

Created

Date Created
  • 2016

154333-Thumbnail Image.png

Optimization model for the design of bioretention basins with dry wells

Description

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP) model has been developed for the minimum cost design of bioretention basins with dry wells.

The model developed simultaneously determines the peak stormwater inflow from watershed parameters and optimizes the size of the basin and the number and depth of dry wells based on infiltration, evapotranspiration (ET), and dry well characteristics and cost inputs. The modified rational method is used for the design storm hydrograph, and the Green-Ampt method is used for infiltration. ET rates are calculated using the Penman Monteith method or the Hargreaves-Samani method. The dry well flow rate is determined using an equation developed for reverse auger-hole flow.

The first phase of development of the model is to expand a nonlinear programming (NLP) for the optimal design of infiltration basins for use with bioretention basins. Next a single dry well is added to the NLP bioretention basin optimization model. Finally the number of dry wells in the basin is modeled as an integer variable creating a MINLP problem. The NLP models and MINLP model are solved using the General Algebraic Modeling System (GAMS). Two example applications demonstrate the efficiency and practicality of the model.

Contributors

Agent

Created

Date Created
  • 2016