Matching Items (46)

128507-Thumbnail Image.png

Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

Description

Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the

Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing.

Contributors

Agent

Created

Date Created
2015-11-17

135140-Thumbnail Image.png

Thermal Energy Storage Using Organic and Metallic Phase Change Materials

Description

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.

Contributors

Agent

Created

Date Created
2016-12

136129-Thumbnail Image.png

A Bench-Top Demonstration of a Novel Material Thermal Storage System Test Apparatus

Description

As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This

As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This prototype would serve to be a test apparatus for testing multiple thermal storage mediums and heat transfer fluids for verification and optimization of the larger system. The initial temperature range for the system to test a wide variety of thermal storage mediums was 100°C to 400°C. As for the thermal storage volume it was decided that the team would need to test volumes of about 100 mL. These design parameters later changed to a smaller range for the initial prototype apparatus. This temperature range was decided to be 210°C to 240°C using tin as a phase change material (PCM). It was also decided a low temperature (<100°C) test using paraffin as the PCM would be beneficial for troubleshooting purposes.

Contributors

Created

Date Created
2015-05

152319-Thumbnail Image.png

Hafnium oxide as an alternative barrier to aluminum oxide for thermally stable niobium tunnel junctions

Description

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.

Contributors

Agent

Created

Date Created
2013

151124-Thumbnail Image.png

Effect of helium ion irradiation on the tunneling behavior in niobium/aluminum/aluminum oxide/niobium Josephson junctions

Description

The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In

The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In this work, we studied the influence of 2MeV Helium ion irradiation with doses up to 5.2×1016 ions/cm2 on the tunneling behavior of Nb/Al/AlOx/Nb Josephson junctions. Structural and analytical TEM characterization, combined with SRIM modeling, indicates that over 4nm of intermixing occurred at the interfaces. EDX analysis after irradiation, suggests that the Al and O compositions from the barrier are collectively distributed together over a few nanometers. Surprisingly, the IV characteristics were largely unchanged. The normal resistance, Rn, increased slightly (<20%) after the initial dose of 3.5×1015 ions/cm2 and remained constant after that. This suggests that tunnel barrier electrical properties were not affected much, despite the significant changes in the chemical distribution of the barrier's Al and O shown in SRIM modeling and TEM pictures. The onset of quasi-particle current, sum of energy gaps (2Δ), dropped systematically from 2.8meV to 2.6meV with increasing dosage. Similarly, the temperature onset of the Josephson current dropped from 9.2K to 9.0K. This suggests that the order parameter at the barrier interface has decreased as a result of a reduced mean free path in the Al proximity layer and a reduction in the transition temperature of the Nb electrode near the barrier. The dependence of Josephson current on the magnetic field and temperature does not change significantly with irradiation, suggesting that intermixing into the Nb electrode is significantly less than the penetration depth.

Contributors

Agent

Created

Date Created
2012

132086-Thumbnail Image.png

Thermal Interface Materials

Description

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in contact with each other experience a very large thermal contact resistance, this creates a thermal bottleneck which severely decreases the heat transfer from one solid to another. To solve this, particles with a high thermal conductivity are used as filler material in either a grease or polymer. A common application for TIMs is in computer components, where a TIM is used to remove the heat generated from computer chips. These materials allow for computer chips to run faster without overheating or throttling performance. However, further improvements to TIMs are still desired, which are needed for more powerful computer chips. In this work, a Stepped Bar Apparatus (SBA) is used to evaluate the thermal properties of TIMs. The SBA is based on Fourier’s Law of one-dimensional heat transfer. This work explains the fundamentals of the SBA measurement, and develops a reliable way to confirm the SBA’s measurement consistency through the use of reference samples. Furthermore, this work evaluates the effects of volume fraction and magnetic alignment on the performance of nickel flakes mixed into a polymer to create a soft TIM composite pad. Magnets are used to align the nickel flakes into a column like arrangement in the direction that heat will travel. Magnetic alignment increases the thermal conductivity of the composite pads, and has peak performance at low compression.

Contributors

Agent

Created

Date Created
2019-12

Metal Matrix-Metal Nanoparticle Composites With Tunable Melting Temperature and High Thermal Conductivity for Phase-Change Thermal Storage

Description

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50–100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236–252 °C by varying nanoparticle diameter from 8.1–14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt–freeze cycles. The nanocomposite’s Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

Contributors

Agent

Created

Date Created
2015-02-01

137319-Thumbnail Image.png

Development of a Measurement System for Thin Film Electrical Properties

Description

With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy

With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy source, among other things. In order to achieve these predictions, however, key structure-property relationships must first be understood. Currently, the Thermal Energy and Nanomaterials Lab at Arizona State University is attempting to solve this problem. This project intends to aid the groups big picture goal by developing a robust and user friendly measurement platform which is capable of reporting charge carrier mobility, electrical conductivity, and Seebeck coefficient values. To date, the charge carrier mobility and electrical conductivity measurements have been successfully implemented and validated. First round analysis has been performed on β-In2Se3 thin film samples. Future work will feature a more comprehensive analysis of this material.

Contributors

Agent

Created

Date Created
2014-05

153948-Thumbnail Image.png

A study of latent heat of vaporization in aqueous nanofluids

Description

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.

Contributors

Agent

Created

Date Created
2015

151100-Thumbnail Image.png

Experimental demonstration of photovoltaic powered solar cooling with ice storage

Description

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.

Contributors

Agent

Created

Date Created
2012