Matching Items (3)

Linnorm: improved statistical analysis for single cell RNA-seq expression data

Description

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy.

Contributors

Agent

Created

Date Created
  • 2017-09-18

128353-Thumbnail Image.png

Exploring genetic associations with ceRNA regulation in the human genome

Description

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or ‘cerQTL’, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.

Contributors

Agent

Created

Date Created
  • 2017-05-02

128638-Thumbnail Image.png

cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes

Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs)

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

Contributors

Agent

Created

Date Created
  • 2017-03-16