Matching Items (11)

Linnorm: improved statistical analysis for single cell RNA-seq expression data

Description

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy.

Contributors

Agent

Created

Date Created
  • 2017-09-18

127886-Thumbnail Image.png

An integrative method to decode regulatory logics in gene transcription

Description

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.

Contributors

Agent

Created

Date Created
  • 2017-10-19

128340-Thumbnail Image.png

Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework

Description

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, filtration, annotation, pathogenic prediction and statistical tests. In the tests with whole genome sequencing data from 1000 Genomes Project, KGGSeq annotated several thousand more reliable non-synonymous variants than other widely used tools (e.g. ANNOVAR and SNPEff). It took only around half an hour on a small server with 10 CPUs to access genotypes of ∼60 million variants of 2504 subjects, while a popular alternative tool required around one day. KGGSeq's bit-block genotype format used 1.5% or less space to flexibly represent phased or unphased genotypes with multiple alleles and achieved a speed of over 1000 times faster to calculate genotypic correlation.

Contributors

Agent

Created

Date Created
  • 2017-01-23

128347-Thumbnail Image.png

Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori

Description

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However,

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.

Contributors

Agent

Created

Date Created
  • 2017-04-19

128353-Thumbnail Image.png

Exploring genetic associations with ceRNA regulation in the human genome

Description

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or ‘cerQTL’, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.

Contributors

Agent

Created

Date Created
  • 2017-05-02

128638-Thumbnail Image.png

cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes

Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs)

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

Contributors

Agent

Created

Date Created
  • 2017-03-16

128532-Thumbnail Image.png

Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-κB pathway in human monocytes

Description

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located in the intron of the long noncoding RNA (lncRNA) LINC00305 by searching the GWAS database. Although the function of LINC00305 is unknown, we found that LINC00305 expression is enriched in atherosclerotic plaques and monocytes. Overexpression of LINC00305 promoted the expression of inflammation-associated genes in THP-1 cells and reduced the expression of contractile markers in co-cultured human aortic smooth muscle cells (HASMCs). We showed that overexpression of LINC00305 activated nuclear factor-kappa beta (NF-κB) and that inhibition of NF-κB abolished LINC00305-mediated activation of cytokine expression. Mechanistically, LINC00305 interacted with lipocalin-1 interacting membrane receptor (LIMR), enhanced the interaction of LIMR and aryl-hydrocarbon receptor repressor (AHRR), and promoted protein expression as well as nuclear localization of AHRR. Moreover, LINC00305 activated NF-κB exclusively in the presence of LIMR and AHRR. In light of these findings, we propose that LINC00305 promotes monocyte inflammation by facilitating LIMR and AHRR cooperation and the AHRR activation, which eventually activates NF-κB, thereby inducing HASMC phenotype switching.

Contributors

Agent

Created

Date Created
  • 2017-04-10

128573-Thumbnail Image.png

Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction

Description

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6C[superscript low] and Ly6C[superscript high]) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E[subscript 2] is involved in the Mo/Mp-mediated inflammatory response,

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6C[superscript low] and Ly6C[superscript high]) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E[subscript 2] is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6C[superscript low] Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFβ1 signalling and subsequently inhibits Ly6C[superscript low] Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE[subscript 2]/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6C[superscript low] Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI.

Contributors

Agent

Created

Date Created
  • 2017-03-03

128355-Thumbnail Image.png

Evolution of Drug-resistant Acinetobacter baumannii After DCD Renal Transplantation

Description

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining liquid at the Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, from March 2013 to November 2014. An outbreak of A. baumannii emerging after DCD renal transplantation was tracked to understand the transmission of the pathogen. PFGE displayed similar DNA patterns between isolates from the same hospital. Antimicrobial susceptibility tests against thirteen antimicrobial agents were determined using the K-B diffusion method and eTest. Whole-genome sequencing was applied to investigate the genetic relationship of the isolates. With the clinical data and research results, we concluded that the A. baumannii isolates 3R1 and 3R2 was probably transmitted from the donor who acquired the bacteria during his stay in the ICU, while isolate 4R1 was transmitted from 3R1 and 3R2 via medical manipulation. This study demonstrated the value of integration of clinical profiles with molecular methods in outbreak investigation and their importance in controlling infection and preventing serious complications after DCD transplantation.

Contributors

Agent

Created

Date Created
  • 2017-05-16

132756-Thumbnail Image.png

Differential Gene Expression in Type II Diabetes

Description

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods.

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.

Contributors

Agent

Created

Date Created
  • 2019-05