Matching Items (22)

151762-Thumbnail Image.png
Description

Teamwork and project management (TPM) tools are important components of sustainability science curricula designed using problem- and project-base learning (PPBL). Tools are additional materials, beyond lectures, readings, and assignments, that structure and facilitate students' learning; they can enhance student teams' ability to complete projects and achieve learning outcomes and, if

Teamwork and project management (TPM) tools are important components of sustainability science curricula designed using problem- and project-base learning (PPBL). Tools are additional materials, beyond lectures, readings, and assignments, that structure and facilitate students' learning; they can enhance student teams' ability to complete projects and achieve learning outcomes and, if instructors can find appropriate existing tools, can reduce time needed for class design and preparation. This research uses a case study approach to evaluate the effectiveness of five TPM tools in two Arizona State University (ASU) sustainability classes: an introductory (100-level) and a capstone (400-level) class. Data was collected from student evaluations and instructor observations in both classes during Spring 2013 and qualitatively analyzed to identify patterns in tool use and effectiveness. Results suggest how instructors might improve tool effectiveness in other sustainability classes. Work plans and meeting agendas were the most effective TPM tools in the 100-level class, while work plans and codes of collaboration were most effective at the 400 level. Common factors in tool effectiveness include active use and integration of tools into class activities. Suggestions for improving tool effectiveness at both levels include introducing tools earlier in the course, incorporating tools into activities, and helping students link a tool's value to sustainability problem-solving competence. Polling students on prior use and incorporating tool use into project assignments may increase 100 level tool effectiveness; and at the 400 level, improvements may be achieved by introducing tools earlier and coaching students to select, find, and develop relevant tools.

ContributorsTrippel, Dorothy (Author) / Redman, Charles L. (Thesis advisor) / Pijawka, K. David (Committee member) / Walters, Molina (Committee member) / Arizona State University (Publisher)
Created2013
187557-Thumbnail Image.png
Description

Museums have long been known as an exciting, educational field trip for teachers and students, however, they have the potential to be more. Aside from field trips, some museums offer a range of resources for teachers including professional development sessions. This study followed a sample of classroom teachers as they

Museums have long been known as an exciting, educational field trip for teachers and students, however, they have the potential to be more. Aside from field trips, some museums offer a range of resources for teachers including professional development sessions. This study followed a sample of classroom teachers as they completed a three-part workshop on Project Based Learning in order to determine in what ways does museum-based professional development change (a) Teacher perceptions of museum resources and (b) Teacher utilization of museum resources within their classroom, as well as what aspects of the museum-designed professional development experience did teachers find most effective in impacting their own teaching. The Experiential Learning Theory and an Awareness, Interest, Desire, Action (AIDA) effect model were used to evaluate how perceptions changed before and after the museum-designed experience. Overall, the trustworthiness of the informal educators and their resources increased, as well as teacher utilization of the resources since participation. Some of the aspects that teachers reported as most effective included their willingness to engage because of their overall enjoyment of the experience. Teachers also emphasized that these workshop sessions enhanced their current teaching practices, and did not simply replace them.

ContributorsGallagher Schromm, Lisa (Author) / Rotheram-Fuller, Erin (Thesis advisor) / Toon, Richard (Committee member) / Walters, Molina (Committee member) / Arizona State University (Publisher)
Created2023
137230-Thumbnail Image.png
Description

The specific focus of the curriculum guide is to encourage inquiry and exploration of sustainability with middle school students. Children need to be explicitly taught how to analyze findings, how to work together, and teachers need to begin to lay the foundation of finding ideal solutions that best serve all

The specific focus of the curriculum guide is to encourage inquiry and exploration of sustainability with middle school students. Children need to be explicitly taught how to analyze findings, how to work together, and teachers need to begin to lay the foundation of finding ideal solutions that best serve all people. The sooner that we introduce our students to these concepts in conjunction with science concepts the better prepared they will be to face the upcoming challenges and the better developed their scientific literacy.

ContributorsSibley, Amanda Marie (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Kurz, Terri (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2014-05
137370-Thumbnail Image.png
Description

Experiential learning is the process of gaining new information by participating in some sort of experience. One way this can occur inside the classroom, as in the inquiry model or problem-based learning. It can also occur outside of the classroom, as in outdoor education or field trips. Recently, virtual experiential

Experiential learning is the process of gaining new information by participating in some sort of experience. One way this can occur inside the classroom, as in the inquiry model or problem-based learning. It can also occur outside of the classroom, as in outdoor education or field trips. Recently, virtual experiential learning opportunities have surfaced, including virtual field trips, experiments, and manipulatives. This project aims to define experiential learning, including examples in every context. Then, it describes current elementary school teachers' perceptions of experiential learning via survey results. The final product also includes an Appendix which is made up of experiential learning lesson plans for each context.

ContributorsMccoy, Maddilyn (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2013-12
136902-Thumbnail Image.png
Description

This project largely focuses on the Latino population and how Hispanic parents should become more involved with their student's education in order to have them prosper in today's society.

ContributorsSanchez Ruiz, Dorian Nazaret (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
135834-Thumbnail Image.png
Description

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest is through day camps and other programs where girls complete a variety of activities related to science and engineering. These activities are usually designed around problem-based learning, a student-lead approach to teaching that requires students to work collaboratively and use background knowledge to solve some sort of given problem. In this project, a day camp for middle school girls was created and implemented to increase student interest in STEM through three problem-based learning activities. By analyzing survey data, it was concluded that the camp was successful in increasing interest and changing participants' attitudes towards science. This approach to learning could be applied to other subject areas, including mathematics, to increase the interest of both male and female students at the secondary level.

ContributorsVitale, Nathalie Maria (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135964-Thumbnail Image.png
Description

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding are equally important in learning mathematics. Procedural fluency is the "ability to apply procedures accurately, efficiently, and flexibly... to build or modify procedures from other procedures" (National Council of Teachers of Mathematics, 2015). Procedural understanding may perceive as merely about the understanding of the arithmetic and memorizing the steps with no understanding but in reality, students need to decide which procedure to use for a given situation; here is where the conceptual understanding comes in handy. Students need the skills to integrate concepts and procedures to develop their own ways to solve a problem, they need to know how to do it and why they do it that way. The purpose of this 5-day unit is teaching with conceptual understanding through hands-on activities and the use of tools to learn geometry. Through these lesson plans, students should be able to develop the conceptual understanding of the angles created by parallel lines and transversal, interior and exterior angles of triangles and polygons, and the use of similar triangles, while developing the procedural understanding. These lesson plans are created to align with the eighth grade Common Core Standards. Students are learning angles through the use of protractor and patty paper, making a conjecture based on their data and experience, and real-life problem solving. The lesson plans used the direct instruction and the 5E inquiry template from the iTeachAZ program. The direct instruction lesson plan includes instructional input, guided practice and individual practice. The 5E inquiry lesson plan has five sections: engage, explore, explain, elaborate and evaluate.

ContributorsLeung, Miranda Wing-Mei (Author) / Kurz, Terri (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
158477-Thumbnail Image.png
Description

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work focused on reaching a larger teacher population along with providing a more robust robot design and construction. The end goal of this graduate thesis is to develop a PDP that reaches multiple teachers, involves a more robust robot design, and lasts beyond this developmental year. There have been many similar research studies and PDPs that have been tested and analyzed but do not fit the requirements of this graduate thesis. These programs provide some guidance in the creation of a new PDP. The overall method of the graduate thesis comes in four main phases: 1) setup, 2) pre-PDP phase, 3) PDP phase, and 4) post PDP phase. The setup focused primarily on funding, IRB approval, research, timeline development, and research question creation. The pre-PDP phase focused primarily on the development of new tailored-to-teacher content, a more robust robot design, and recruitment of participants. The PDP phase primarily focused on how the teachers perform and participate in the PDP. Lastly, the post PDP phase involved data analysis along with a resource development plan. The last post-PDP step is to consolidate all of the findings in a clear, concise, and coherent format for future work.

Contributorslerner, jonah (Author) / Carberry, Adam (Thesis advisor) / Walters, Molina (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2020
Description

This creative project explores how macro-ecological photography can serve as a community engagement tool for the field of biomimicry, meant to provoke interest in the subject. My photos, and the organisms pictured in them, were hand selected for this project to form one cohesive, aesthetic set. The appeal of the

This creative project explores how macro-ecological photography can serve as a community engagement tool for the field of biomimicry, meant to provoke interest in the subject. My photos, and the organisms pictured in them, were hand selected for this project to form one cohesive, aesthetic set. The appeal of the colorful pictures captured the attention of audience members so they felt more inclined to learn about the informational content accompanying the art. Each picture is coupled with a scientific explanation as to how the pictured organism relates to the field of biomimicry, including concrete examples of its application. To maximize exposure of the project, I published my photos through a website and an e-book, and also presented them as a live photography exhibit on campus at Arizona State University.

ContributorsGerber, Haley Dawn (Author) / Jenik, Adriene (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132904-Thumbnail Image.png
Description

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.

ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05