Matching Items (9)

128036-Thumbnail Image.png

Mycobacterial Membrane Vesicles Administered Systemically in Mice Induce a Protective Immune Response to Surface Compartments of Mycobacterium tuberculosis

Description

Pathogenic and nonpathogenic species of bacteria and fungi release membrane vesicles (MV), containing proteins, polysaccharides, and lipids, into the extracellular milieu. Previously, we demonstrated that several mycobacterial species, including bacillus

Pathogenic and nonpathogenic species of bacteria and fungi release membrane vesicles (MV), containing proteins, polysaccharides, and lipids, into the extracellular milieu. Previously, we demonstrated that several mycobacterial species, including bacillus Calmette-Guerin (BCG) and Mycobacterium tuberculosis, release MV containing lipids and proteins that subvert host immune response in a Toll-like receptor 2 (TLR2)-dependent manner (R. Prados-Rosales et al., J. Clin. Invest. 121:1471–1483, 2011, doi:10.1172/JCI44261). In this work, we analyzed the vaccine potential of MV in a mouse model and compared the effects of immunization with MV to those of standard BCG vaccination. Immunization with MV from BCG or M. tuberculosis elicited a mixed humoral and cellular response directed to both membrane and cell wall components, such as lipoproteins. However, only vaccination with M. tuberculosis MV was able to protect as well as live BCG immunization. M. tuberculosis MV boosted BCG vaccine efficacy. In summary, MV are highly immunogenic without adjuvants and elicit immune responses comparable to those achieved with BCG in protection against M. tuberculosis.

Contributors

Agent

Created

Date Created
  • 2014-09-30

128040-Thumbnail Image.png

Integrated Genomic and Epigenomic Analysis of Breast Cancer Brain Metastasis

Description

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.

Contributors

Agent

Created

Date Created
  • 2014-01-29

141505-Thumbnail Image.png

Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children

Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

Contributors

Agent

Created

Date Created
  • 2013-06-03

137802-Thumbnail Image.png

Identification of Tumor Associated Antigens using Nucleic Acid Programmable Protein Arrays

Description

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.

Contributors

Created

Date Created
  • 2012-12

129310-Thumbnail Image.png

Autoantibody Signature for the Serologic Detection of Ovarian Cancer

Description

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer.

Contributors

Agent

Created

Date Created
  • 2015-01-01

Quantifying antibody binding on protein microarrays using microarray nonlinear calibration

Description

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared with traditional approaches. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen targets were identified with MiNC, which is consistent with the improved assay performance of protein microarrays. MiNC has the potential to be employed in biomedical research using multiplex antibody assays that need quantitation, including the discovery of antibody biomarkers, clinical diagnostics with multi-antibody signatures, and construction of immune mathematical models.

Contributors

Agent

Created

Date Created
  • 2013-08-12

152847-Thumbnail Image.png

Informatics approaches for integrative analysis of disparate high-throughput genomic datasets in cancer

Description

The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that

The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that we see in cancer. There are more than 100 types of cancer, each having many more subtypes with aberrations being unique to each. In the past two decades, the widespread application of high-throughput genomic technologies, such as micro-arrays and next-generation sequencing, has led to the revelation of many such aberrations. Known types and subtypes can be readily identified using gene-expression profiling and more importantly, high-throughput genomic datasets have helped identify novel sub-types with distinct signatures. Recent studies showing usage of gene-expression profiling in clinical decision making in breast cancer patients underscore the utility of high-throughput datasets. Beyond prognosis, understanding the underlying cellular processes is essential for effective cancer treatment. Various high-throughput techniques are now available to look at a particular aspect of a genetic mechanism in cancer tissue. To look at these mechanisms individually is akin to looking at a broken watch; taking apart each of its parts, looking at them individually and finally making a list of all the faulty ones. Integrative approaches are needed to transform one-dimensional cancer signatures into multi-dimensional interaction and regulatory networks, consequently bettering our understanding of cellular processes in cancer. Here, I attempt to (i) address ways to effectively identify high quality variants when multiple assays on the same sample samples are available through two novel tools, snpSniffer and NGSPE; (ii) glean new biological insight into multiple myeloma through two novel integrative analysis approaches making use of disparate high-throughput datasets. While these methods focus on multiple myeloma datasets, the informatics approaches are applicable to all cancer datasets and will thus help advance cancer genomics.

Contributors

Agent

Created

Date Created
  • 2014

152740-Thumbnail Image.png

Structural variant detection: a novel approach

Description

Genomic structural variation (SV) is defined as gross alterations in the genome broadly classified as insertions/duplications, deletions inversions and translocations. DNA sequencing ushered structural variant discovery beyond laboratory detection techniques

Genomic structural variation (SV) is defined as gross alterations in the genome broadly classified as insertions/duplications, deletions inversions and translocations. DNA sequencing ushered structural variant discovery beyond laboratory detection techniques to high resolution informatics approaches. Bioinformatics tools for computational discovery of SVs however are still missing variants in the complex cancer genome. This study aimed to define genomic context leading to tool failure and design novel algorithm addressing this context. Methods: The study tested the widely held but unproven hypothesis that tools fail to detect variants which lie in repeat regions. Publicly available 1000-Genomes dataset with experimentally validated variants was tested with SVDetect-tool for presence of true positives (TP) SVs versus false negative (FN) SVs, expecting that FNs would be overrepresented in repeat regions. Further, the novel algorithm designed to informatically capture the biological etiology of translocations (non-allelic homologous recombination and 3&ndashD; placement of chromosomes in cells –context) was tested using simulated dataset. Translocations were created in known translocation hotspots and the novel&ndashalgorithm; tool compared with SVDetect and BreakDancer. Results: 53% of false negative (FN) deletions were within repeat structure compared to 81% true positive (TP) deletions. Similarly, 33% FN insertions versus 42% TP, 26% FN duplication versus 57% TP and 54% FN novel sequences versus 62% TP were within repeats. Repeat structure was not driving the tool's inability to detect variants and could not be used as context. The novel algorithm with a redefined context, when tested against SVDetect and BreakDancer was able to detect 10/10 simulated translocations with 30X coverage dataset and 100% allele frequency, while SVDetect captured 4/10 and BreakDancer detected 6/10. For 15X coverage dataset with 100% allele frequency, novel algorithm was able to detect all ten translocations albeit with fewer reads supporting the same. BreakDancer detected 4/10 and SVDetect detected 2/10 Conclusion: This study showed that presence of repetitive elements in general within a structural variant did not influence the tool's ability to capture it. This context-based algorithm proved better than current tools even with half the genome coverage than accepted protocol and provides an important first step for novel translocation discovery in cancer genome.

Contributors

Agent

Created

Date Created
  • 2014

154070-Thumbnail Image.png

Integrative analysis of genomic aberrations in cancer and xenograft Models

Description

No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such heterogeneity arise among patients with the same cancer type, among cancer cells within the same individual’s tumor

No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such heterogeneity arise among patients with the same cancer type, among cancer cells within the same individual’s tumor and even among cells within the same sub-clone over time. The recent application of next-generation sequencing and precision medicine techniques is the driving force to uncover the complexity of cancer and the best clinical practice. The core concept of precision medicine is to move away from crowd-based, best-for-most treatment and take individual variability into account when optimizing the prevention and treatment strategies. Next-generation sequencing is the method to sift through the entire 3 billion letters of each patient’s DNA genetic code in a massively parallel fashion.

The deluge of next-generation sequencing data nowadays has shifted the bottleneck of cancer research from multiple “-omics” data collection to integrative analysis and data interpretation. In this dissertation, I attempt to address two distinct, but dependent, challenges. The first is to design specific computational algorithms and tools that can process and extract useful information from the raw data in an efficient, robust, and reproducible manner. The second challenge is to develop high-level computational methods and data frameworks for integrating and interpreting these data. Specifically, Chapter 2 presents a tool called Snipea (SNv Integration, Prioritization, Ensemble, and Annotation) to further identify, prioritize and annotate somatic SNVs (Single Nucleotide Variant) called from multiple variant callers. Chapter 3 describes a novel alignment-based algorithm to accurately and losslessly classify sequencing reads from xenograft models. Chapter 4 describes a direct and biologically motivated framework and associated methods for identification of putative aberrations causing survival difference in GBM patients by integrating whole-genome sequencing, exome sequencing, RNA-Sequencing, methylation array and clinical data. Lastly, chapter 5 explores longitudinal and intratumor heterogeneity studies to reveal the temporal and spatial context of tumor evolution. The long-term goal is to help patients with cancer, particularly those who are in front of us today. Genome-based analysis of the patient tumor can identify genomic alterations unique to each patient’s tumor that are candidate therapeutic targets to decrease therapy resistance and improve clinical outcome.

Contributors

Agent

Created

Date Created
  • 2015