Matching Items (2)
Description

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine-scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross-ecosystem moisture gradient (CEMG) of all four ecosystems considered together.

An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.

ContributorsSylvain, Zachary A. (Author) / Wall, Diana H. (Author) / Cherwin, Karie L. (Author) / Peters, Debra P. C. (Author) / Reichmann, Lara G. (Author) / Sala, Osvaldo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
128931-Thumbnail Image.png
Description

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.

ContributorsMagalhaes, Catarina (Author) / Stevens, Mark I. (Author) / Cary, S. Craig (Author) / Ball, Becky (Author) / Storey, Bryan C. (Author) / Wall, Diana H. (Author) / Turk, Roman (Author) / Ruprecht, Ulrike (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2012-09-19