Matching Items (17)
151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152772-Thumbnail Image.png
Description
A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.)

A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.) Coville: Zygophyllaceae) and several Asteraceae. Piscatopus was considered monotypic, comprised solely of P. griseus Sleeper, 1960, whereas Minyomerus formerly was comprised of seven species: M. innocuus Horn, 1876 (designated as the type species for Minyomerus in Pierce, 1913), M. caseyi (Sharp, 1891), M. conicollis Green, 1920, M. constrictus (Casey, 1888), M. languidus Horn, 1876, M. laticeps (Casey, 1888), M. microps (Say, 1831). This revision includes comprehensive redescriptions of the previously described species in these genera and descriptions of ten new species: M. imberbus sp. nov., M. caponei sp. nov., M. reburrus sp. nov., M. cracens sp. nov., M. trisetosus sp. nov., M. puticulatus sp. nov., M. bulbifrons sp. nov., M. politus sp. nov., M. gravivultus sp. nov., and M. rutellirostris sp. nov. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5 outgroup, 17 ingroup) was carried out in WinClada and yielded a single most-parsimonious cladogram (length = 82, consistency index = 65, retention index = 82). The monophyly of Minyomerus is supported by the preferred cladogram. The results of the cladistic analysis place Piscatopus griseus within the genus Minyomerus as sister to M. rutellirostris. Therefore, Piscatopus is demoted to a junior synonym of Minyomerus and its sole member P. griseus, is moved to Minyomerus as M. griseus (Sleeper), new combination. Additionally, the species M. innocuus Horn, 1876 is demoted to a junior synonym of M. microps (Say, 1831), based on the principle of priority, and M. microps is elevated to the rank of type for the genus. The species M. languidus, M. microps, and M. trisetosus are putatively considered parthenogenetic, and lack male specimens over a broad range of sampling events. The diversity in exterior and genitalic morphology, range of host plants, overlapping species distributions, and geographic extent suggests an origin during the Miocene (~15 mya).
ContributorsJansen, Michael Andrew (Author) / Franz, Nico M (Thesis advisor) / Wojciechowski, Martin (Committee member) / Rosenberg, Michael (Committee member) / Arizona State University (Publisher)
Created2014
150180-Thumbnail Image.png
Description
The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for

The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for anthropogenic carbon dioxide. A full understanding of the workings of the biological carbon pump requires a knowledge of the role of different taxonomic groups of phytoplankton (protists and cyanobacteria) to organic carbon export. However, this has been difficult due to the degraded nature of particles sinking into particle traps, the main tools employed by oceanographers to collect sinking particulate matter in the ocean. In this study DNA-based molecular methods, including denaturing gradient gel electrophoresis, cloning and sequencing, and taxon-specific quantitative PCR, allowed for the first time for the identification of which protists and cyanobacteria contributed to the material collected by the traps in relation to their presence in the euphotic zone. I conducted this study at two time-series stations in the subtropical North Atlantic Ocean, one north of the Canary Islands, and one located south of Bermuda. The Bermuda study allowed me to investigate seasonal and interannual changes in the contribution of the plankton community to particle flux. I could also show that small unarmored taxa, including representatives of prasinophytes and cyanobacteria, constituted a significant fraction of sequences recovered from sediment trap material. Prasinophyte sequences alone could account for up to 13% of the clone library sequences of trap material during bloom periods. These observations contradict a long-standing paradigm in biological oceanography that only large taxa with mineral shells are capable of sinking while smaller, unarmored cells are recycled in the euphotic zone through the microbial loop. Climate change and a subsequent warming of the surface ocean may lead to a shift in the protist community toward smaller cell size in the future, but in light of these findings these changes may not necessarily lead to a reduction in the strength of the biological carbon pump.
ContributorsAmacher, Jessica (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Lomas, Michael (Committee member) / Wojciechowski, Martin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
156011-Thumbnail Image.png
Description
A floristic analysis is essential to understanding the current diversity and structure

of community associations of plants in a region. Also, a region’s floristic analysis is key not only to investigating their geographical origin(s) but is necessary to their management and protection as a reservoir of greater biodiversity. With an area

A floristic analysis is essential to understanding the current diversity and structure

of community associations of plants in a region. Also, a region’s floristic analysis is key not only to investigating their geographical origin(s) but is necessary to their management and protection as a reservoir of greater biodiversity. With an area of 2,250,000 square kilometers, the country of Saudi Arabia covers almost four-fifths of the Arabian Peninsula. Efforts to document information on the flora of Saudi Arabia began in the 1700s and have resulted in several comprehensive publications over the last 25 years. There is no doubt that these studies have helped both the community of scientific researchers as well as the public to gain knowledge about the number of species, types of plants, and their distribution in Saudi Arabia. However, there has been no effort to use digital technology to make the data contained in various Saudi herbarium collections easily accessible online for research and teaching purposes. This research project aims to develop a “virtual flora” portal for the vascular plants of Saudi Arabia. Based on SEINet and the Symbiota software used to power it, a preliminary website portal was established to begin an effort to make information of Saudi Arabia’s flora available on the world- wide web. Data comprising a total of 12,834 specimens representing 175 families were acquired from different organizations and used to create a database for the designed website. After analyzing the data, the Fabaceae family (“legumes”) was identified as a largest family and chosen for further analysis. This study contributes to help scientific researchers, government workers and the general public to have easy, unlimited access to the plant information for a variety of purposes.
ContributorsAlbediwi, Albatool (Author) / Wojciechowski, Martin (Thesis advisor) / Franz, Nico (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2017
136816-Thumbnail Image.png
Description
Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number of vascular bundles in Arabidopsis. Could these two phenotypes complement

Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number of vascular bundles in Arabidopsis. Could these two phenotypes complement one another additively? In this work, double mutants overexpressing both AVP1 and PLAFP were characterized. These double mutants have enhanced biomass, greater leaf area, and a larger number of vascular bundles than the single mutant lines. Overexpression of PLAFP does not result in any increase in rhizosphere acidification capacity.
ContributorsWilson, Sean (Co-author) / Furstenau, Tara (Co-author) / Gaxiola, Roberto (Thesis director) / Mason, Hugh (Committee member) / Wojciechowski, Martin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136838-Thumbnail Image.png
Description
Type I H+-PPase encoding genes, such as AVP1 (Arabidopsis thaliana), TsVP (Thellungiella halophilla), TaVP,( Triticum aestivum), and OVP1 (Oryza sativa) are highly conserved and.traditionally known to operate as vacuolar proton translocating pyrophosphatases. It is worth mentioning that Rocha-Facanha and de Meis presented in vitro evidence with tonoplast fractions of maize

Type I H+-PPase encoding genes, such as AVP1 (Arabidopsis thaliana), TsVP (Thellungiella halophilla), TaVP,( Triticum aestivum), and OVP1 (Oryza sativa) are highly conserved and.traditionally known to operate as vacuolar proton translocating pyrophosphatases. It is worth mentioning that Rocha-Facanha and de Meis presented in vitro evidence with tonoplast fractions of maize coleoptiles and seeds consistent with the reverse function of the H+-PPase (1998). These authors suggested that given the appropriate thermodynamic conditions in vivo, the H+-PPase could operate as a system of energy conservation with a role in the maintenance of cytosolic PPi levels. Further evidence in support for a PPi-synthase activity of plant H+-PPases came from work done on tonoplasts from mature oranges where PPi synthesis was demonstrated when a ΔpH of 3 units was imposed (Marsh et al. 2000).

Futher research has shown that transgenics overexpressing type I H+-PPases develop more root and shoot biomass, and have enhanced rhizosphere acidification capacity than wild types. The increased root biomass suggests that previous reports describing the response of these plants to water scarcity as drought tolerance are incomplete. Larger root systems indicate that an important component of the response is drought resistance. The enhanced rhizosphere acidification capacity has also been associated with an increase in nutrient use efficiency, conferring a growth advantage under nitrogen and phosphorous deficient conditions.
While a vacuolar localized H+-PPase easily explains the salt tolerant phenotypes, it does little to provide a mechanism for an increase in root and shoot biomass and/or an augmented rhizosphere acidification capacity. Several groups have argued that higher levels and transport of the growth hormone auxin could be responsible for the above phenotypes. An alternative model focusing on the function of a plasma membrane bound H+-PPase in sieve elements and companion cells links these phenotypes with enhanced phloem sucrose loading and transport.
The following paper reviews publications in which the H+-PPase overexpression technology has been used since 2006 in an attempt to identify cues that could help us test the compatibility of the the proposed models with the actual data.
ContributorsCoulter, Joshua (Author) / Gaxiola, Roberto (Thesis director) / Wojciechowski, Martin (Committee member) / Pizzio, Gaston (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
153587-Thumbnail Image.png
Description
The distinguishing feature of the filamentous fungi is the hyphae - tube-like microscopic cells that exhibit polarized growth via apical extension and allow the fungus to interact with its environment. Fungi elongate at the hyphal apex, through the localized construction of new plasma membrane and cell wall through the

The distinguishing feature of the filamentous fungi is the hyphae - tube-like microscopic cells that exhibit polarized growth via apical extension and allow the fungus to interact with its environment. Fungi elongate at the hyphal apex, through the localized construction of new plasma membrane and cell wall through the exocytosis of secretory vesicles. One population of these vesicles have been identified as chitosomes, containing chitin synthase isoenzymes, which are responsible for the polymerization of N-acetylglucosamine from UDP N-acetylglucosamine into chitin, the primary fibrillar component of the fungal cell wall. The chitosomes, in addition to other vesicles, can be observed aggregating in the hyphal tip in most filamentous fungi. In the Ascomycota and Basidiomycota, this collection of vesicles exhibits discrete organization and has been termed a Spitzenkörper. Although accumulations of vesicles can be observed in the hyphal tip of many growing filamentous fungi, some debate continues as to what precisely defines a Spitzenkörper. This study reports the details of three separate projects: first, to document the effects of deleting a single chitin synthase, CHS-1 and CHS-6 in Neurospora crassa with regards to hyphal ultrastructure, cytoplasmic organization, and growth in comparison to the wild-type. Given the importance of chitin synthesis in fungal cell growth, deletion of a critical chitin synthase presumably impacts cell wall structure, fungal growth and cytoplasmic organization. Second, an examination of the ultrastructure of four zygomycetous fungi - Coemansia reversa, Mortierella verticillata, Mucor indicus, and Gilbertella persicaria has been conducted. Utilization of cryofixation and freeze-substitution techniques for electron microscopy has produced improved preservation of cytoplasmic ultrastructure, particularly at the hyphal apex, allowing detailed analysis of vesicle size, contents, and organization. Lastly, hyphal tip organization was reviewed in a broad range of fungi. Previous studies had either focused on a few select fungi or representative groups. Vesicle organization, composition and size do appear to vary among the classes of fungi, but some trends, like the vesicle crescent in the zygomycetous fungi have been documented.
ContributorsFisher, Karen Elizabeth (Author) / Roberson, Robert W. (Thesis advisor) / Chandler, Douglas (Committee member) / Riquelme, Meritxell (Committee member) / Stutz, Jeam (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2015
154093-Thumbnail Image.png
Description
Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch

Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch scales (plant and associated soil), plant neighbors can either negatively or positively affect soil water availability via competition or hydraulic redistribution, respectively. The aboveground microclimate can also be altered via canopy shading effects by neighbors. Across longer timescales (years), plants may adjust their physiological (water-use) traits in response to the neighbor-altered microclimate, which subsequently affects transpiration rates. The influence of physiological adjustments and neighbor-altered microclimate on water fluxes was assessed around Larrea tridentata in the Sonoran Desert. Field measurements of Larrea’s stomatal behavior and vertical root distributions were used to examine the effects of neighbors on Larrea’s physiological controls on transpiration. A modeling based approach was implemented to explore the sensitivity of evapotranspiration and soil moisture to neighbor effects. Neighbors significantly altered both above- and belowground physiological controls on evapotranspiration. Compared to Larrea growing alone, neighbors increased Larrea’s annual transpiration by up to 75% and 30% at the patch and stand scales, respectively. Estimates of annual transpiration were highly sensitive to the presence/absence of competition for water, and on seasonal timescales, physiological adjustments significantly influenced transpiration estimates. Plant-plant interactions can be a significant source of spatial variation in ecohydrological models, and both physiological adjustments to neighbors and neighbor effects on microclimate affect small scale (patch to ecosystem) water fluxes.
ContributorsKropp, Heather (Author) / Ogle, Kiona (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2015
Description
There is a relative lack of basic information about early diverging species of the genus Medicago that, for the most part, were formerly considered to be in the genus Trigonella. Species boundaries are not always clear, for example, the most recent treatment of the genus Medicago submerged four previously recognized

There is a relative lack of basic information about early diverging species of the genus Medicago that, for the most part, were formerly considered to be in the genus Trigonella. Species boundaries are not always clear, for example, the most recent treatment of the genus Medicago submerged four previously recognized species into Medicago monantha, a widely distributed species in the Middle East. These species are recognized on the basis of morphological characters such as fruit number, shape, length and areole shape and size, but species identification is still challenging and further clarification of species boundaries is needed. There is also a lack of cytogenetic information. Some of the relatively few published chromosome numbers, e.g. 2n=28, and 44, differ from those of the rest of the genus, which are mostly 2n=16 or multiples thereof, although seven species are 2n=14. As part of a larger study of the genome and chromosome number evolution in the genus Medicago, we obtained genome size data using flow cytometry for 44 accessions of 14 currently recognized early diverging species, with a focus on Medicago monantha. Chromosome numbers were obtained using standard cytological methods. Our chromosome number data confirm a chromosome number of 2n=16 for M. brachycarpa (genome size of 1.33 pg), and M. monspeliaca (1.88 pg), and 2n=28 for M. polyceratia (2.77 pg) and give new numbers for some species; 2n=16 for M. biflora (2.7 pg), and a previously unknown chromosome number for these early diverging species of 2n=14 for Medicago fischeriana (~1.35 pg). Interestingly, our data support the hypothesis that there are at least two entities within M. monantha as currently recognized that differ in chromosome number and genome size; two accessions had chromosome numbers of 2n=26 and 30 with corresponding genome sizes of 2.68 and 2.85 pg and three other accessions had chromosome numbers 2n=36,44, and another 44 with genome sizes of 3.94, 3.89, and 4.04 pg. There are also some significant morphological differences between these two entities, such as fruit length and areole area. These data lead to both further clarification of the relationships of early diverging Medicago and help build a platform for more in-depth research concerning the evolution of chromosome number and genome size within Medicago.
ContributorsSteier, Julia Elizabeth (Author) / Steele, Kelly (Thesis director) / Wojciechowski, Martin (Committee member) / Fehlberg, Shannon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
128805-Thumbnail Image.png
Description

Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is described as a new species, and a new monotypic genus. Discovered in 2012, it is a rare species known only from a single locality in the Kaokoveld Centre of Plant Endemism, north-western Namibia. Phylogenetic analyses of molecular sequence data from

Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is described as a new species, and a new monotypic genus. Discovered in 2012, it is a rare species known only from a single locality in the Kaokoveld Centre of Plant Endemism, north-western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadelphous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one-seeded, laterally flattened, slightly inflated but indehiscent fruits.

Created2015-03-27