Matching Items (38)

132550-Thumbnail Image.png

Exploring the Implementation of Multiple Partial Reconfiguration Regions to use FPGAs in Edge Computing

Description

Edge computing is an emerging field that improves upon cloud computing by moving the service from a centralized server to several de-centralized servers that are closer to the end user to decrease the latency, bandwidth, and cost requirements. Field programmable

Edge computing is an emerging field that improves upon cloud computing by moving the service from a centralized server to several de-centralized servers that are closer to the end user to decrease the latency, bandwidth, and cost requirements. Field programmable grid array (FPGA) devices are highly reconfigurable and excel in highly parallelized tasks, making them popular in many applications including digital signal processing and cryptography, while also making them a great candidate for edge computation. The purpose of this project was to explore existing board support packages for the Arria 10 GX FPGA and propose a BSP design with multiple partial reconfiguration regions to better support the use of FPGAs in edge computing. In this project, the general OpenCL development flow was studied, OpenCL workflow for Altera/Intel FPGAs was researched, the reference OpenCL BSP was explored to understand the connections between the modules, and a customized BSP with two partial reconfiguration regions was proposed. The existing BSP was explored using the Intel Quartus Prime software suite and the block diagrams for the existing and proposed designs were created using Microsoft Visio.

Contributors

Agent

Created

Date Created
2019-05

Mobile Waterway Monitor

Description

The Mobile Waterway Monitor seeks to monitor water in an unexplored way. The module is buoyant and will float with the current as well as harvests solar energy. In short, the Mobile Waterway Monitor excels in size constraints, flexibility, extensibility,

The Mobile Waterway Monitor seeks to monitor water in an unexplored way. The module is buoyant and will float with the current as well as harvests solar energy. In short, the Mobile Waterway Monitor excels in size constraints, flexibility, extensibility, and capability. This current following monitor can show both measured trends like pH and interpolated trends like water speed, river contours, and elevation drop. The MWM strikes a balance between accuracy, portability, and being multi-purpose.

Contributors

Agent

Created

Date Created
2017-05

134157-Thumbnail Image.png

Blockchain Design and Simulation

Description

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.

Contributors

Agent

Created

Date Created
2017-12

132211-Thumbnail Image.png

FPGAs as an Edge Computing Solution

Description

As the Internet of Things continues to expand, not only must our computing power grow
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial

As the Internet of Things continues to expand, not only must our computing power grow
alongside it, our very approach must evolve. While the recent trend has been to centralize our
computing resources in the cloud, it now looks beneficial to push more computing power
towards the “edge” with so called edge computing, reducing the immense strain on cloud
servers and the latency experienced by IoT devices. A new computing paradigm also brings
new opportunities for innovation, and one such innovation could be the use of FPGAs as edge
servers. In this research project, I learn the design flow for developing OpenCL kernels and
custom FPGA BSPs. Using these tools, I investigate the viability of using FPGAs as standalone
edge computing devices. Concluding that—although the technology is a great fit—the current
necessity of dynamically reprogrammable FPGAs to be closely coupled with a host CPU is
holding them back from this purpose. I propose a modification to the architecture of the Intel
Arria 10 GX that would allow it to be decoupled from its host CPU, allowing it to truly serve as a
viable edge computing solution.

Contributors

Agent

Created

Date Created
2019-05

151941-Thumbnail Image.png

Towards energy efficient computing with Linux: enabling task level power awareness and support for energy efficient accelerator

Description

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators.

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature to model processor power consumption, there is a lack of such models to capture power consumption at the task-level. Task-level energy models are a requirement for an operating system (OS) to perform real-time power management as OS time multiplexes tasks to enable sharing of hardware resources. I propose a detailed design methodology for constructing an architecture agnostic task-level power model and incorporating it into a modern operating system to build an online task-level power profiler. The profiler is implemented inside the latest Linux kernel and validated for Intel Sandy Bridge processor. It has a negligible overhead of less than 1\% hardware resource consumption. The profiler power prediction was demonstrated for various application benchmarks from SPEC to PARSEC with less than 4\% error. I also demonstrate the importance of the proposed profiler for emerging architectural techniques through use case scenarios, which include heterogeneous computing and fine grained per-core DVFS. Along with architectural enhancement in general purpose processors to improve energy efficiency, hardware accelerators like Coarse Grain reconfigurable architecture (CGRA) are gaining popularity. Unlike vector processors, which rely on data parallelism, CGRA can provide greater flexibility and compiler level control making it more suitable for present SoC environment. To provide streamline development environment for CGRA, I propose a flexible framework in Linux to do design space exploration for CGRA. With accurate and flexible hardware models, fine grained integration with accurate architectural simulator, and Linux memory management and DMA support, a user can carry out limitless experiments on CGRA in full system environment.

Contributors

Agent

Created

Date Created
2013

151945-Thumbnail Image.png

System-level synthesis of dataplane subsystems for MPSoCs

Description

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.

Contributors

Agent

Created

Date Created
2013

Unified framework for energy-proportional computing in multicore processors: novel algorithms and practical implementation

Description

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need for dynamic energy management (DEM), much more than for single-core processors, as DEM for multi-cores is no more a mechanism just to ensure that a processor is kept under specified temperature limits, but also a set of techniques that manage various processor controls like dynamic voltage and frequency scaling (DVFS), task migration, fan speed, etc. to achieve a stated objective. The objectives span a wide range from maximizing throughput, minimizing power consumption, reducing peak temperature, maximizing energy efficiency, maximizing processor reliability, and so on, along with much more wider constraints of temperature, power, timing, and reliability constraints. Thus DEM can be very complex and challenging to achieve. Since often times many DEMs operate together on a single processor, there is a need to unify various DEM techniques. This dissertation address such a need. In this work, a framework for DEM is proposed that provides a unifying processor model that includes processor power, thermal, timing, and reliability models, supports various DEM control mechanisms, many different objective functions along with equally diverse constraint specifications. Using the framework, a range of novel solutions is derived for instances of DEM problems, that include maximizing processor performance, energy efficiency, or minimizing power consumption, peak temperature under constraints of maximum temperature, memory reliability and task deadlines. Finally, a robust closed-loop controller to implement the above solutions on a real processor platform with a very low operational overhead is proposed. Along with the controller design, a model identification methodology for obtaining the required power and thermal models for the controller is also discussed. The controller is architecture independent and hence easily portable across many platforms. The controller has been successfully deployed on Intel Sandy Bridge processor and the use of the controller has increased the energy efficiency of the processor by over 30%

Contributors

Agent

Created

Date Created
2013

151200-Thumbnail Image.png

Compilation of stream programs onto embedded multicore architectures

Description

In recent years, we have observed the prevalence of stream applications in many embedded domains. Stream programs distinguish themselves from traditional sequential programming languages through well defined independent actors, explicit data communication, and stable code/data access patterns. In order to

In recent years, we have observed the prevalence of stream applications in many embedded domains. Stream programs distinguish themselves from traditional sequential programming languages through well defined independent actors, explicit data communication, and stable code/data access patterns. In order to achieve high performance and low power, scratch pad memory (SPM) has been introduced in today's embedded multicore processors. Current design frameworks for developing stream applications on SPM enhanced embedded architectures typically do not include a compiler that can perform automatic partitioning, mapping and scheduling under limited on-chip SPM capacities and memory access delays. Consequently, many designs are implemented manually, which leads to lengthy tasks and inferior designs. In this work, optimization techniques that automatically compile stream programs onto embedded multi-core architectures are proposed. As an initial case study, we implemented an automatic target recognition (ATR) algorithm on the IBM Cell Broadband Engine (BE). Then integer linear programming (ILP) and heuristic approaches were proposed to schedule stream programs on a single core embedded processor that has an SPM with code overlay. Later, ILP and heuristic approaches for Compiling Stream programs on SPM enhanced Multicore Processors (CSMP) were studied. The proposed CSMP ILP and heuristic approaches do not optimize for cycles in stream applications. Further, the number of software pipeline stages in the implementation is dependent on actor to processing engine (PE) mapping and is uncontrollable. We next presented a Retiming technique for Throughput optimization on Embedded Multi-core processors (RTEM). RTEM approach inherently handles cycles and can accept an upper bound on the number of software pipeline stages to be generated. We further enhanced RTEM by incorporating unrolling (URSTEM) that preserves all the beneficial properties of RTEM heuristic and also scales with the number of PEs through unrolling.

Contributors

Agent

Created

Date Created
2012

149788-Thumbnail Image.png

A New RNS 4-moduli set for the implementation of FIR filters

Description

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been several RNS moduli sets proposed for the implementation of digital filters. However, some are unbalanced and some do not provide the required dynamic range. This thesis addresses the drawbacks of existing RNS moduli sets and proposes a new moduli set for efficient implementation of FIR filters. An efficient VLSI implementation model has been derived for the design of a reverse converter from RNS to the conventional two's complement representation. This model facilitates the realization of a reverse converter for better performance with less hardware complexity when compared with the reverse converter designs of the existing balanced 4-moduli sets. Experimental results comparing multiply and accumulate units using RNS that are implemented using the proposed four-moduli set with the state-of-the-art balanced four-moduli sets, show large improvements in area (46%) and power (43%) reduction for various dynamic ranges. RNS FIR filters using the proposed moduli-set and existing balanced 4-moduli set are implemented in RTL and compared for chip area and power and observed 20% improvements. This thesis also presents threshold logic implementation of the reverse converter.

Contributors

Agent

Created

Date Created
2011

150660-Thumbnail Image.png

System level power and thermal management on embedded processors

Description

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and attain higher performance than ever before. Therefore, power and thermal management have become the significant design considerations for modern embedded devices. Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two well-known hardware capabilities offered by modern embedded processors. However, the power or thermal aware performance optimization is not fully explored for the mainstream embedded processors with discrete DVFS and DPM capabilities. Many key problems have not been answered yet. What is the maximum performance that an embedded processor can achieve under power or thermal constraint for a periodic application? Does there exist an efficient algorithm for the power or thermal management problems with guaranteed quality bound? These questions are hard to be answered because the discrete settings of DVFS and DPM enhance the complexity of many power and thermal management problems, which are generally NP-hard. The dissertation presents a comprehensive study on these NP-hard power and thermal management problems for embedded processors with discrete DVFS and DPM capabilities. In the domain of power management, the dissertation addresses the power minimization problem for real-time schedules, the energy-constrained make-span minimization problem on homogeneous and heterogeneous chip multiprocessors (CMP) architectures, and the battery aware energy management problem with nonlinear battery discharging model. In the domain of thermal management, the work addresses several thermal-constrained performance maximization problems for periodic embedded applications. All the addressed problems are proved to be NP-hard or strongly NP-hard in the study. Then the work focuses on the design of the off-line optimal or polynomial time approximation algorithms as solutions in the problem design space. Several addressed NP-hard problems are tackled by dynamic programming with optimal solutions and pseudo-polynomial run time complexity. Because the optimal algorithms are not efficient in worst case, the fully polynomial time approximation algorithms are provided as more efficient solutions. Some efficient heuristic algorithms are also presented as solutions to several addressed problems. The comprehensive study answers the key questions in order to fully explore the power and thermal management potentials on embedded processors with discrete DVFS and DPM capabilities. The provided solutions enable the theoretical analysis of the maximum performance for periodic embedded applications under power or thermal constraints.

Contributors

Agent

Created

Date Created
2012