Matching Items (2)

150924-Thumbnail Image.png

Brain dynamics based automated epileptic seizure detection

Description

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The motivation for the development of an automated seizure detection algorithm in this research was to assist physicians in such a laborious, time consuming and expensive task. Seizures in the EEG vary in duration (seconds to minutes), morphology and severity (clinical to subclinical, occurrence rate) within the same patient and across patients. The task of seizure detection is also made difficult due to the presence of movement and other recording artifacts. An early approach towards the development of automated seizure detection algorithms utilizing both EEG changes and clinical manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. Approaches based on artificial neural networks have improved the detection performance at the cost of algorithm's training. Measures of nonlinear dynamics, such as Lyapunov exponents, have been applied successfully to seizure prediction. Within the framework of this MS research, a seizure detection algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE) was developed and tested. The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 93% and mean specificity of 0.048 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free and patient-independent. It is expected that this algorithm will assist physicians in reducing the time spent on detecting seizures, lead to faster and more accurate diagnosis, better evaluation of treatment, and possibly to better treatments if it is incorporated on-line and real-time with advanced neuromodulation therapies for epilepsy.

Contributors

Agent

Created

Date Created
  • 2012

154384-Thumbnail Image.png

Kinematic and dynamical analysis techniques for human movement analysis from portable sensing devices

Description

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.

The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.

Contributors

Agent

Created

Date Created
  • 2016