Matching Items (4)

152593-Thumbnail Image.png

Sharing is caring: a data exchange framework for colocated mobile apps

Description

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to achieve synergistic benefits. To enable integration between apps, manual communication between developers is needed, which can be problematic on many levels. In order to promote app integration, a systematic approach towards data sharing between multiple apps is essential. However, current approaches to app integration require large code modifications to reap the benefits of shared data such as requiring developers to provide APIs or use large, invasive middlewares. In this thesis, a data sharing framework was developed providing a non-invasive interface between mobile apps for data sharing and integration. A separate app acts as a registry to allow apps to register database tables to be shared and query this information. Two health monitoring apps were developed to evaluate the sharing framework and different methods of data integration between apps to promote synergistic feedback. The health monitoring apps have shown non-invasive solutions can provide data sharing functionality without large code modifications and manual communication between developers.

Contributors

Agent

Created

Date Created
  • 2014

152302-Thumbnail Image.png

Thermal aware scheduling in hadoop map reduce framework

Description

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to achieve greening of the data centers. This thesis deals with cooling energy management in data centers running data-processing frameworks. In particular, we propose ther- mal aware scheduling for MapReduce framework and its Hadoop implementation to reduce cooling energy in data centers. Data-processing frameworks run many low- priority batch processing jobs, such as background log analysis, that do not have strict completion time requirements; they can be delayed by a bounded amount of time. Cooling energy savings are possible by being able to temporally spread the workload, and assign it to the computing equipments which reduce the heat recirculation in data center room and therefore the load on the cooling systems. We implement our scheme in Hadoop and performs some experiments using both CPU-intensive and I/O-intensive workload benchmarks in order to evaluate the efficiency of our scheme. The evaluation results highlight that our thermal aware scheduling reduces hot-spots and makes uniform temperature distribution within the data center possible. Sum- marizing the contribution, we incorporated thermal awareness in Hadoop MapReduce framework by enhancing the native scheduler to make it thermally aware, compare the Thermal Aware Scheduler(TAS) with the Hadoop scheduler (FCFS) by running PageRank and TeraSort benchmarks in the BlueTool data center of Impact lab and show that there is reduction in peak temperature and decrease in cooling power using TAS over FCFS scheduler.

Contributors

Agent

Created

Date Created
  • 2013

151754-Thumbnail Image.png

Time division multiplexing of network access by security groups in high performance computing environments

Description

It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC

It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC systems servicing data so sensitive that administrators enforce either a) sequential job processing - only one job at a time on the entire system, or b) physical separation - devoting an entire HPC system to a single project until recommissioned. The driving forces behind this type of security are numerous but share the common origin of data so sensitive that measures above and beyond industry standard are used to ensure information security. This paper presents a network security solution that provides information security above and beyond industry standard, yet still enabling multi-user computations on the system. This paper's main contribution is a mechanism designed to enforce high level time division multiplexing of network access (Time Division Multiple Access, or TDMA) according to security groups. By dividing network access into time windows, interactions between applications over the network can be prevented in an easily verifiable way.

Contributors

Agent

Created

Date Created
  • 2013

150062-Thumbnail Image.png

TaxiWorld: developing and evaluating solution methods for multi-agent planning domains

Description

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all be set on a scenario-by-scenario basis. The taxis must attempt to service the fares as quickly as possible, by picking each one up and carrying it to its drop-off location. The TaxiWorld scenario is formally modeled using both Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision Processes (MMDPs). The purpose of developing formal models is to learn how to build and use formal Markov models, such as can be given to planners to solve for optimal policies in problem domains. However, finding optimal solutions for Dec-POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an improvement to the method already in use on the simulator, and the methods were compared in identical scenarios to determine which is more effective. The empirical method is of course not optimal - rather, it attempts to simply account for some of the most important factors to achieve an acceptable level of effectiveness while still retaining a reasonable level of computational complexity for online solving.

Contributors

Agent

Created

Date Created
  • 2011