Matching Items (3)
156891-Thumbnail Image.png
Description
Providing an environmental context to early hominins is as important as describing the hominin fossils themselves, because evolutionary processes are tightly linked to everchanging ecosystems that vary across space and through time. An optimal understanding of ecosystems changes is critical to formulate and test hypotheses regarding human evolution and adaptation.

Providing an environmental context to early hominins is as important as describing the hominin fossils themselves, because evolutionary processes are tightly linked to everchanging ecosystems that vary across space and through time. An optimal understanding of ecosystems changes is critical to formulate and test hypotheses regarding human evolution and adaptation. Fortunately, the fossil record has yielded abundant remains of mammals which can be used to explore the possible causal relationships between environmental change and mammal – including hominin –evolution. Although many studies have already been conducted on this topic, most of them are framed at large spatial and temporal scales. Instead, this dissertation focuses on the evolution and paleoecology of only one group of mammals (the Suidae) in a specific geographical area (lower Awash Valley in Ethiopia) and within a constrained time frame (3.8–2.6 Ma). Three dissertation papers address: 1) changes in suid taxonomic composition in relation to Late Pliocene faunal turnover ~2.8 Ma in the Lee-Adoyta basin, Ledi-Geraru; 2) comparisons of suid diets from Hadar (~3.45–2.95 Ma) with respect to those of Kanapoi (~4.1 Ma, West Turkana, Kenya); 3) the dietary ecology of the suids from Woranso-Mille (~3.8–3.2 Ma). Results of these papers show that 1) after ~2.8 Ma there is a replacement of suid species that is coupled with low relative abundance of suids. This is compatible with more open and/or arid environments at this time; 2) suid dietary breadth was broader in Hadar than in Kanapoi, but this is mostly driven by the dietary niche space occupied by Kolpochoerus in Hadar, a suid genus absent from Kanapoi; 3) suid diets vary both temporally and geographically within the lower Awash Valley. Kolpochoerus incorporates more C4 resources (e.g., grasses) in its diet after ~3.5 Ma and in general, suids after ~3.5 Ma in Woranso-Mille had C4-enriched diets in comparison with those from nearby Hadar and Dikika. Presumably, the changes in suid communities (relative abundance and taxonomic composition) and dietary shifts observed in suids were triggered by climatic and habitat changes that also contributed to shape the behavioural and morphological evolution of early hominins.
ContributorsAguilar Lazagabaster, Ignacio (Author) / Reed, Kaye E (Thesis advisor) / Kimbel, William H. (Committee member) / Ungar, Peter S. (Committee member) / Arizona State University (Publisher)
Created2018
153622-Thumbnail Image.png
Description
Dietary diversity is an important component of species’s ecology that often relates to species’s abundance and geographic distribution. Additionally, dietary diversity is involved in many hypotheses regarding the geographic distribution and evolutionary fate of fossil primates. However, in taxa such as primates with relatively generalized morphology and diets, a method

Dietary diversity is an important component of species’s ecology that often relates to species’s abundance and geographic distribution. Additionally, dietary diversity is involved in many hypotheses regarding the geographic distribution and evolutionary fate of fossil primates. However, in taxa such as primates with relatively generalized morphology and diets, a method for approximating dietary diversity in fossil species is lacking.

One method that has shown promise in approximating dietary diversity is dental microwear analyses. Dental microwear variance has been used to infer dietary variation in fossil species, but a strong link between variation in microwear and variation in diet is lacking. This dissertation presents data testing the hypotheses that species with greater variation in dental microwear textures have greater annual, seasonal, or monthly dietary diversity.

Dental microwear texture scans were collected from Phase II facets of first and second molars from 309 museum specimens of eight species of extant African Old World monkeys (Cercopithecidae; n = 9 to 74) with differing dietary diversity. Dietary diversity was calculated based on food category consumption frequency at study sites of wild populations. Variation in the individual microwear variables complexity (Asfc) and scale of maximum complexity (Smc) distinguished groups that were consistent with differences in annual dietary diversity, but other variables did not distinguish such groups. The overall variance in microwear variables for each species in this sample was also significantly correlated with the species’s annual dietary diversity. However, the overall variance in microwear variables was more strongly correlated with annual frequencies of fruit and foliage consumption. Although some variation due to seasonal and geographic differences among individuals was present, this variation was small in comparison to the variation among species. Finally, no association was found between short-term monthly dietary variation and variation in microwear textures.

These results suggest that greater variation in microwear textures is correlated with greater annual dietary diversity in Cercopithecidae, but that variation may be more closely related to the frequencies of fruit and foliage in the diet.
ContributorsShapiro, Amy Elissa (Author) / Reed, Kaye E (Thesis advisor) / Schwartz, Gary T (Committee member) / Ungar, Peter S. (Committee member) / Arizona State University (Publisher)
Created2015
129556-Thumbnail Image.png
Description

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and to expand the extant baseline to include Soricidae. Specimens were chosen to sample a broad range of environments, semi-desert to rainforest. Species examined were all largely insectivorous, but some are reported to supplement their diets with vertebrate tissues and others with plant matter. Results indicate subtle but significant differences between samples grouped by both diet independent of environment and environment independent of diet. Subtle diet differences were more evident in microwear texture variation considered by habitat (i.e., grassland). These results suggest that while environment does not swamp the diet signal in shrew incisor microwear, studies can benefit from control of habitat type.

ContributorsWithnell, Charles (Author) / Ungar, Peter S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-01