Matching Items (12)

128796-Thumbnail Image.png

A Population Based Study of Seasonality of Skin and Soft Tissue Infections: Implications for the Spread of CA-MRSA

Description

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0–4 years, 5–9 years, 10–14 years, and 15–19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

Contributors

Created

Date Created
  • 2013-04-02

130341-Thumbnail Image.png

Mass Media and the Contagion of Fear: The Case of Ebola in America

Description

Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in

Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends.
Methodology
We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data.
Conclusions
We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.

Contributors

Created

Date Created
  • 2015-06-11

130349-Thumbnail Image.png

Contagion in Mass Killings and School Shootings

Description

Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage

Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.
Methods
Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.
Conclusions
We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

Contributors

Created

Date Created
  • 2015-07-02

128953-Thumbnail Image.png

Transmission potential of influenza A/H7N9, February to May 2013, China

Description

Background
On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with

Background
On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.
Methods
We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.
Results
Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.
Conclusion
Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.

Contributors

Created

Date Created
  • 2013-10-02

129018-Thumbnail Image.png

The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile

Description

Background
The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial,

Background
The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S.
Methods
We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.
Results
While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period.
Conclusions
There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.

Contributors

Created

Date Created
  • 2012-11-13

129367-Thumbnail Image.png

Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement

Description

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical algorithms at the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil (CTC) incident datasets.

Contributors

Created

Date Created
  • 2014-12-01

Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission

Description

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number (R0) for sexual transmission alone is less than 1. Critical to the assessment of outbreak risk, estimation of the potential attack rates, and assessment of control measures, are estimates of the basic reproduction number, R0.
Methods
We estimated the R0 of the 2015 ZIKV outbreak in Barranquilla, Colombia, through an analysis of the exponential rise in clinically identified ZIKV cases (n = 359 to the end of November, 2015).
Findings
The rate of exponential rise in cases was ρ = 0.076 days[superscript −1], with 95% CI [0.066,0.087] days[superscript −1]. We used a vector-borne disease model with additional direct transmission to estimate the R0; assuming the R0 of sexual transmission alone is less than 1, we estimated the total R0 = 3.8 [2.4,5.6], and that the fraction of cases due to sexual transmission was 0.23 [0.01,0.47] with 95% confidence.
Interpretation
This is among the first estimates of R0 for a ZIKV outbreak in the Americas, and also among the first quantifications of the relative impact of sexual transmission.

Contributors

Created

Date Created
  • 2016-10-17

154271-Thumbnail Image.png

Studies on epidemic control in structured populations with applications to influenza

Description

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.

Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:

I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?

II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?

Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.

Contributors

Agent

Created

Date Created
  • 2016

154643-Thumbnail Image.png

Type 2 diabetes and obesity: a biological, behavioral, and environmental context

Description

According to the Centers for Disease Control and Prevention (CDC), type 2 diabetes accounts for 90-95% of diabetes (29.1 million) cases and manifests in 15-30% of prediabetes (86 million) cases,

According to the Centers for Disease Control and Prevention (CDC), type 2 diabetes accounts for 90-95% of diabetes (29.1 million) cases and manifests in 15-30% of prediabetes (86 million) cases, where 9 out of 10 individuals do not know they have prediabetes. Obesity, observed in 56.9% of diabetes cases, arises from the interactions among genetic, biological, environmental, and behavioral factors that are not well understood. Assessing the strength of these links in conjunction with the identification and evaluation of intervention strategies in vulnerable populations is central to the study of chronic diseases. This research addresses three issues that loosely connect three levels of organization utilizing a combination of quantitative and qualitative methods. First, the nonlinear dynamics between insulin, glucose, and free fatty acids is studied via a hypothesis-based model and validated with bariatric surgery data, demonstrating key metabolic factors for maintaining glucose homeostasis. Second, the challenges associated with the treatment or management, and prevention of diabetes is explored in the context of an individualized-based intervention study, highlighting the importance of diet and environment. Third, the importance of tailored school lunch programs and policies is studied through contagion models developed within a social ecological framework. The Ratatouille Effect, motivated by a pilot study among PreK-8th grade Arizona students, is studied and exposes the importance of institutionalizing practical methods that factor in the culture, norms, and values of the community. The outcomes of this research illustrate an integrative framework that bridges physiological, individual, and population level approaches to study type 2 diabetes and obesity from a holistic perspective. This work reveals the significance of utilizing quantitative and qualitative methods to better elucidate underlying causes of chronic diseases and for developing solutions that lead to sustainable healthy behaviors, and more importantly, the need for translatable multilevel methodologies for the study of the progression, treatment, and prevention of chronic diseases from a multidisciplinary perspective.

Contributors

Agent

Created

Date Created
  • 2016

156373-Thumbnail Image.png

Public mass shootings impact on the public's firearm carrying habits: evidence of a moral panic

Description

Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events

Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events achieve have shown to impact the public behavior (e.g., increased firearm sales). However, the impact public mass shootings have on firearm storage and carry habits of the public is not well understood. Using data collected from the Transportation Security Administration, this study examines how mass shootings have led to moral panics occurring within the U.S. through the examination of the firearm carrying habits among the population immediately following mass shootings. The results indicate that loaded firearms with rounds in the chamber detected by the TSA have significantly increased since 2012. Further, firearms detected immediately following a public mass shooting had a higher proportion of firearms loaded with a round in the chamber relative to 7 days prior to the shooting. Moreover, the increase in proportions of firearms found loaded with a round in the chamber exponentially decays as days past the initial shooting, these events occur at a higher rate than the decay rate can normalize these occurrences. I conclude that in the wake of these shootings a moral panic ensues that is partially responsible for the change in the general public’s arming configuration habits. Further research is needed in to determine the impact on crime, and public health related issues due to this change in the public’s firearm carrying habits.

Contributors

Agent

Created

Date Created
  • 2018