Matching Items (27)

A Pilot, Longitudinal Study of the Effect of a High Fat Diet Compared to a Chow Diet on the Energy Gap Between Energy Intake and Energy Expenditure

Description

This is a pilot study testing a new indirect calorimeter device. This project was designed to determine the effect of a high fat versus a standard chow diet and age

This is a pilot study testing a new indirect calorimeter device. This project was designed to determine the effect of a high fat versus a standard chow diet and age on the energy gap (the difference between energy intake and energy expenditure). Measurements of energy expenditure and oxygen consumption were obtained over a 23-hour period from a group of rats fed a high fat diet and a group of rats fed standard chow diet. The experiments were repeated during an experimental phase for 12 weeks, a phase of caloric restriction for 4 weeks, and a phase of weight regain for 4 weeks. We found energy expenditure and oxygen consumption to decrease in the caloric restriction phase and increase with excessive weight gain. Rats fed a high fat diet and obesity prone rats had a wider energy gap than rats fed a standard chow diet and obesity resistant rats. The caloric restriction phase closed the energy gap between energy expenditure and energy intake for all of the rats. The weight regain phase shifted the rats back into positive energy balance so that the energy intake was greater than the energy expenditure. The rats showed greater weight gain in the weight regain phase than in the experimental phase for all groups of rats. The indirect calorimeter device would require further testing to improve the accuracy of the measurements of respiratory quotient and carbon dioxide production before being used in future clinical research applications. The indirect calorimeter device has the potential to record respiratory quotient and carbon dioxide production.

Contributors

Agent

Created

Date Created
  • 2019-05

Development and Assessment of Two Novel Pitting Designs for Increased Needle Visibility under Ultrasound

Description

Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to

Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to the target nerve. Despite significant progress in needle visualization with ultrasound imaging, there are still several factors that lead to poor needle visibility, the main factor being insertion angle. Introducing cavities and holes in the needle at specific intervals through pitting corrosion may alter the ultrasonic feedback from the sensor, thereby resulting in improved clarity of the reconstructed image. The purpose of this experiment is to investigate the effectiveness of two novel pitting designs on the needle’s visibility under ultrasound. Two different designs and two depths of cut are tested in a 22 factorial that is blocked by insertion angle: a uniform and a non-uniform design. Needles were cut using a Plain Jane and Igor laser cutter and imaged using a GE Logig e BT12 ultrasound imaging machine. Images were compared visually and objectively by using a tool in Photoshop to calculate the luminosity of the needle. Two videos were also taken capturing the difficulty of imaging surgical needles. Results showed that pitting had a major impact on needle visibility at 30° and a marginal impact at 0°. The videos supported these results as it was considerably more difficult to locate the control needle than the experimental needle. This suggests the probe must be in a specific plane with the control needle for it to be visible while the experimental needle is much more lenient. Results from the two depths of cuts showed similar results in that the designs which were cut twice were more visible than their counterparts at 30°. The study showed that pitting has positive effects on needle visibility; it improves visibility by increasing the luminescence of the needle and by decreasing its sensitivity to probe position.

Contributors

Agent

Created

Date Created
  • 2016-05

135233-Thumbnail Image.png

Portable Heart Rate Monitor and iOS Application for Anxiety Therapy

Description

As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily

As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily activities and impede academic and social success. The purpose of this project is to design and engineer a portable heart rate monitor that communicates with an iOS mobile application for use by individuals suffering from anxiety or panic disorders. The proposed device captures the innovation of combining biosensor feedback with new, creative therapy methods on a convenient iOS application. The device is implemented as an Arduino Uno which translates radial pulse information onto an LCD screen from a wristband. Additionally, the iOS portion uses a slow expanding and collapsing animation to guide the user through a calming breathing exercise while displaying their pulse in beats per minute. The user's awareness or his or her ability to control one's own physiological state supports and facilitates an additional form of innovative therapy. The current design of the iOS app uses a random-number generator between 40 to 125 to imitate a realistic heart rate. If the value is less than 60 or greater than 105, the number is printed in red; otherwise the heart rate is displayed in green. Future versions of this device incorporate bluetooth capabilities and potentially additional synchronous methods of therapy. The information presented in this research provides an excellent example of the integrations of new mobile technology and healthcare.

Contributors

Agent

Created

Date Created
  • 2016-05

133764-Thumbnail Image.png

Design and Development of Injectable, Wireless, Sub-Millimeter Neurostimulators

Description

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new design. The device frequency response was characterized and its resonant modes and output voltages determined through a Fast Fourier Transform. The fundamental thickness mode frequency was found to be 15.4MHz with a corresponding 10.25mV amplitude, and a longitudinal resonant frequency of 3.1Mhz with a corresponding 2.2mV amplitude across a 50Ω resistor. The high miniaturization of the device holds promise for future work for creating an injectable, wireless system for the treatment of neurological disorders.

Contributors

Agent

Created

Date Created
  • 2018-05

131435-Thumbnail Image.png

The Prevention of Excessive Weight Gain Through the Induction of Mild-Hyperthermia in Rodents: A Pilot Study

Description

Preliminary studies indicate that the use of dietary menthol may prevent excessive weight gain through the activation of the transient receptor potential melastatin family member 8 (TRPM8) ion channel. It

Preliminary studies indicate that the use of dietary menthol may prevent excessive weight gain through the activation of the transient receptor potential melastatin family member 8 (TRPM8) ion channel. It has also been expressed that elevation of the core temperature (Tc) inducing mild hyperthermia via an increase in ambient temperature aids in a marked reduction of the drive to eat and weight gain. While caloric restriction (CR) aims to treat obesity and secondary sicknesses, weight regain is a common result during long term weight maintenance. The goal of these studies was to evaluate and identify if the menthol and mild hyperthermia mechanisms could couple synergistically to reduce or abrogate weight gain. Ambient temperature (Ta) was increased incrementally to identify the threshold in which rodents display mild hyperthermia. Our initial attempts at hyperthermia induction failed because of limitations in the environmental chamber. These trials fail to note a threshold at which elevated Tc is sustained for any period of time. The data suggests an ambient temperature of 36-38 °C would be appropriate to induce a mild hyperthermia. A mild hyperthermia is described as the elevation of Tc 2-3 ° above the hypothalamic set point. To facilitate future hyperthermia studies, an environmental chamber was designed. A wine cooler was converted to withstand the desired temperatures, through the use of heat tape, a proportional controller, and a translucent Plexiglas custom fit door. Beyond leveraging temperature to regulate weight gain, dietary changes including a comparison between standard chow food, high fat diet, and menthol supplemented chow food treatment illustrate a strong likelihood of weight gain variability. In this pilot study, weight gain expression when given a diet supplemented with menthol (1%) showed no statistical significance relative to a high fat diet nor chow food, however, it revealed a trend of reduced weight gain. It is assumed the combination of supplemental menthol and mild hyperthermia induction will exacerbate their effects.

Contributors

Agent

Created

Date Created
  • 2020-05

Improving Medical Aerosols: An exploration of nebulous discharge

Description

Improving medical aerosols is the multifaceted objective that is the overarching theme of this work. This thesis is the culmination of many hours of academic research. It details the current

Improving medical aerosols is the multifaceted objective that is the overarching theme of this work. This thesis is the culmination of many hours of academic research. It details the current mechanical and physiological obstacles of state of the art drug inhalation technology, as well as provides a detailed guide of the experimental set up, procedure, analysis and background for the charge neutralization experiments performed by the author. The findings of this research are that inhalation devices need to become personalized; meaning adjustable flow rates, particle sizes, and charge levels. To improve the efficiency of lung deposition they could use MRI to take advantage of 3D modeling software to make transport models of an individual patient's lungs. This model would allow an engineer to calculate the air velocity in each passage of the respiratory system and would account for any pulmonary obstructions that would completely alter the deposition pattern from the average healthy patient. With the velocity profile of the lung a doctor could formulate an aerosol with the perfect attributed for the most targeted delivery. For the experiments performed in this work the following results were obtained. The ionization of air by polonium 210 alpha particles is dependent on the distance from the alpha emitting source and the strength of the electric field. Furthermore discharge of aerosol droplets is possible through volume conduction however the mass of the polonium 210 isotope must be proportional to the ionization current demand.

Contributors

Agent

Created

Date Created
  • 2014-05

133444-Thumbnail Image.png

Analyzing rat sciatic nerve fibers under various electrical stimuli

Description

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing Remak fibers using osmium tetroxide staining and imaging with the help of transmission electron microscopy. Using this method, nerves had various electrical stimuli attached to them and were analyzed as such. They were analyzed with a cuff electrode attached, a stimulator attached, and both, with images taken at the center of the nerve and the ends of them. The number and area taken by the Remak fibers were analyzed, along with the g-ratios of the Group A and B fibers. These were analyzed to help deduce the overall health of the fibers along with vacuolization, and mitochondria available. While some important information was gained from this evaluation, further testing has to be done to improve the myelin detection system, along with analyzing the proper and necessary Remak fibers and the role they play. The research tries to thoroughly look at the necessary material and find a way to use it as a guide to further experimentation with electrical stimuli, and notes the differences found within and without various groups, various points of observation, and various stimuli as a whole. Nevertheless, this research allows a strong look into the benefits of transmission electron microscopy and the ability to assess electrical stimulation from these points.

Contributors

Created

Date Created
  • 2018-05

136404-Thumbnail Image.png

DOSE-RESPONSE CHARACTERISTICS OF ISOFLURANE ON PLASMA GLUCOSE CONCENTRATIONS

Description

Abstract: Purpose: The dose-dependent effects of isoflurane anesthesia on insulin inhibition and insulin resistance were compared in rats. Methods: Three rats were entered into the procedure with each rat being

Abstract: Purpose: The dose-dependent effects of isoflurane anesthesia on insulin inhibition and insulin resistance were compared in rats. Methods: Three rats were entered into the procedure with each rat being subjected to 3 different doses of steady state concentrations of isoflurane (1.75%, 2.0%, and 2.50%). A surgical plane of anesthesia was induced by continuous infusion of isoflurane via an induction box at 4.0% isoflurane and when anesthesia was achieved the infusion of anesthesia was lowered to the steady state concentrations of isoflurane. Plasma glucose concentrations were measured every 10 minutes until two or three consistent peak values were observed. After assurance of reaching peak values sub-cutaneous insulin (0.75 units/kg) was injected between the scapulas. Following the insulin injection plasma glucose concentrations were obtained every 10 minutes via pinprick until peak minimal glucose values were reached. If the plasma glucose of any animal reached a level approximately 50 mg/dL, subcutaneous glucose was injected (2.0 grams/kg) to prevent adverse effects of hypoglycemia. Results: For absolute plasma glucose post-anesthetic values a comparison of multiple mean glucose concentrations (single factor ANOVA) yielded p=8.06 x 10-6. A post-hoc analysis revealed significant p values between 3 pairs of means: 1.75%/2.0%= 0.004; 1.75%/2.5%= 0.03; 2.0%/2.5%= 0.02 . For normalized plasma glucose values post-anesthetic a comparison of multiple means (ANOVA) yielded a p value of 0.03. Post-hoc analysis indicated that the peak response was at 2.0% with significant difference between 1.75%/2.0% =0.03 and 2.0%/2.5%=0.02. There was no significance between glucose values 1.75%/2.50%=0.68. For plasma glucose values post-insulin both absolute and normalized a mean comparison analysis (ANOVA) concluded that during post insulin the data was not statistically significant as p=0.68. Conclusions: When absolute plasma glucose concentrations were normalized by the baseline taken at conscious state the dose-dependency disappeared and concluded the largest change in plasma glucose at 2.0%. Although the data post-insulin injection was not statistically significant it can be concluded that there was normal glucose uptake and that there was no impaired insulin action on the skeletal muscle.

Contributors

Agent

Created

Date Created
  • 2015-05

152547-Thumbnail Image.png

Surgical Freedom in Endoscopic Skull Base Surgery: Quantitative Analysis for Endoscopic Approaches

Description

During the past five decades neurosurgery has made great progress, with marked improvements in patient outcomes. These noticeable improvements of morbidity and mortality can be attributed to the advances in

During the past five decades neurosurgery has made great progress, with marked improvements in patient outcomes. These noticeable improvements of morbidity and mortality can be attributed to the advances in innovative technologies used in neurosurgery. Cutting-edge technologies are essential in most neurosurgical procedures, and there is no doubt that neurosurgery has become heavily technology dependent. With the introduction of any new modalities, surgeons must adapt, train, and become thoroughly familiar with the capabilities and the extent of application of these new innovations. Within the past decade, endoscopy has become more widely used in neurosurgery, and this newly adopted technology is being recognized as the new minimally invasive future of neurosurgery. The use of endoscopy has allowed neurosurgeons to overcome common challenges, such as limited illumination and visualization in a very narrow surgical corridor; however, it introduces other challenges, such as instrument "sword fighting" and limited maneuverability (surgical freedom). The newly introduced concept of surgical freedom is very essential in surgical planning and approach selection and can play a role in determining outcome of the procedure, since limited surgical freedom can cause fatigue or limit the extent of lesion resection. In my thesis, we develop a consistent objective methodology to quantify and evaluate surgical freedom, which has been previously evaluated subjectively, and apply this model to the analysis of various endoscopic techniques. This model is crucial for evaluating different endoscopic surgical approaches before they are applied in a clinical setting, for identifying surgical maneuvers that can improve surgical freedom, and for developing endoscopic training simulators that accurately model the surgical freedom of various approaches. Quantifying the extent of endoscopic surgical freedom will also provide developers with valuable data that will help them design improved endoscopes and endoscopic instrumentation.

Contributors

Agent

Created

Date Created
  • 2014

152131-Thumbnail Image.png

Feasibility of investigating mineralization processes under simulated microgravity free convectionless conditions in unit gravity environment with implication on bone mineral density

Description

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.

Contributors

Agent

Created

Date Created
  • 2013