Matching Items (10)

129140-Thumbnail Image.png

Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

Description

Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex

Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

Contributors

Agent

Created

Date Created
  • 2015-03-01

129518-Thumbnail Image.png

THE LIGHT CURVE OF SN 1987A REVISITED: CONSTRAINING PRODUCTION MASSES OF RADIOACTIVE NUCLIDES

Description

We revisit the evidence for the contribution of the long-lived radioactive nuclides [superscript 44]Ti, [superscript 55]Fe, [superscript 56]Co, [superscript 57]Co, and [superscript 60]Co to the UVOIR light curve of SN

We revisit the evidence for the contribution of the long-lived radioactive nuclides [superscript 44]Ti, [superscript 55]Fe, [superscript 56]Co, [superscript 57]Co, and [superscript 60]Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at [superscript 44]Ti, [superscript 55]Co, [superscript 56]Ni, [superscript 57]Ni, and [superscript 60]Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M([superscript 56]Ni) = (7.1 ± 0.3) × 10[superscript –2] M ☉ and M([superscript 57]Ni) = (4.1 ± 1.8) × 10[superscript –3] M ☉. Our best fit [superscript 44]Ti mass is M([superscript 44]Ti) = (0.55 ± 0.17) × 10[superscript –4] M ☉, which is in disagreement with the much higher (3.1 ± 0.8) × 10[superscript –4] M ☉ recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for [superscript 55]Co and [superscript 60]Co and, as a result, we only give upper limits on the production masses of M([superscript 55]Co) < 7.2 × 10[superscript –3] M ☉ and M([superscript 60]Co) < 1.7 × 10[superscript –4] M ☉. Furthermore, we find that the leptonic channels in the decay of [superscript 57]Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [[superscript 57]Ni/[superscript 56]Ni] = 2.5 ± 1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.

Contributors

Created

Date Created
  • 2014-09-01

151290-Thumbnail Image.png

Extinct radionuclides in the early Solar System: the initial Solar System abundance of ⁶⁰Fe from angrites and unequilibrated ordinary chondrites and ²⁶Al-²⁶Mg chronology of ungrouped achondrites

Description

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.

Contributors

Agent

Created

Date Created
  • 2012

157133-Thumbnail Image.png

Anomalous Chiral Plasmas in the Hydrodynamic Regime

Description

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.

Contributors

Agent

Created

Date Created
  • 2019

151565-Thumbnail Image.png

MEMS harsh environment sensors for earth and space exploration

Description

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.

Contributors

Agent

Created

Date Created
  • 2013

150269-Thumbnail Image.png

Structure and asymmetry in simulations of supernova explosions

Description

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements,

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant.

Contributors

Agent

Created

Date Created
  • 2011

150947-Thumbnail Image.png

Modeling layered accretion and the magnetorotational instability in protoplanetary disks

Description

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation,

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."

Contributors

Agent

Created

Date Created
  • 2012

152355-Thumbnail Image.png

Astrophysical neutrinos at the low and high energy frontiers

Description

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum.

Contributors

Agent

Created

Date Created
  • 2013

152054-Thumbnail Image.png

Trans-Neptunian and exosolar satellites and dust: dynamics and surface effects

Description

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set.

Contributors

Agent

Created

Date Created
  • 2013

149712-Thumbnail Image.png

Progenitors of type Ia supernovae

Description

Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor

Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times are explored using analytical models. Combined with a new observation technique, this model places new constraints on the characteristic time delay between the formation of stars and the first type Ia supernovae. This derived delay time (500 million years) implies low-mass companions for single degenerate progenitor scenarios. In the latter portions of this dissertation, two progenitor mechanisms are simulated in detail; white dwarf collisions and mergers. From the first of these simulations, it is evident that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae. Many of the combinations of masses simulated produce sufficient quantities of 56Ni (up to 0.51 solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses produce 56Ni yields that span the entire range of supernova brightnesses, from the very dim and underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71 solar masses. The 56Ni yield in the collision simulations depends non-linearly on total system mass, mass ratio, and impact parameter. Using the same numerical tools as in the collisions examination, white dwarf mergers are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold, degenerate core surrounded by a hot accretion disk. The properties of these disks have strong implications for various viscosity treatments that have attempted to pin down the accretion times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than viscosity driven accretion. A handful of simulations also exhibit helium detonations on the surface of the primary that bear a resemblance to helium novae. Finally, some of the preliminary groundwork that has been laid for constructing a new numerical tool is discussed. This new tool advances the merger simulations further than any research group has done before, and has the potential to answer some of the lingering questions that the merger study has uncovered. The results of thermal diffusion tests using this tool have a remarkable correspondence to analytical predictions.

Contributors

Agent

Created

Date Created
  • 2011