Matching Items (7)

136390-Thumbnail Image.png

Modeling the mantle genesis of basalts from the Lassen Volcanic Center

Description

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order to determine the pressure, temperature, source composition, and method of melting that lead to the production of melt in the mantle below Lassen. To this aim, a suite of primitive basalts (i.e. SiO2<52 and Mg#>65) are corrected for fractional crystallization by adding minerals back to the bulk rock composition with the goal of returning them to a primary composition in equilibrium with the mantle. Thermobarometry of the primary melt compositions is conducted to determine temperature and pressure of melting, in addition to a forward mantle modeling technique to simulate mantle melting at varying pressures to constrain source composition and method of melting (batch vs. fractional). The results from the two techniques agree on an average depth of melt extraction of 36 km and a source composition similar to that of depleted mantle melted by batch melting. Although attempted for both calc-alkaline and tholeiitic basalts, the fractional crystallization correction and thus the pressure-temperature calculations were only successful for tholeiitic basalts due to the hydrous nature of the calc-alkaline samples. This leaves an opportunity to repeat this study with parameters appropriate for hydrous basalts, allowing for the comparison of calc-alkaline and tholeiitic melting conditions.

Contributors

Agent

Created

Date Created
  • 2015-05

132353-Thumbnail Image.png

Monitoring Changes in Dissolved Organic Matter in Enriched Artificial Hot Spring Fluids Using Spectroscopic Methods

Description

Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The

Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino acids and humic material. This experiment was used to observe how organic matter could influence hydrothermal systems, such as Sylvan Springs in Yellowstone National Park, USA. Using optical density at 600 nm (OD 600), excitation-emission matrix spectra (EEMS), and Illumina sequencing methods (16S rRNA gene sequencing), changes in dissolved organic matter (DOM) were observed based on long term incubation at 84ºC and microbial influence. Four media conditions were tested over a two-month duration to assess these changes: inoculated pine needle media, uninoculated pine needle media, inoculated yeast extract media, and uninoculated yeast extract media. The inoculated samples contained microbes from a fluid and sediment sample of Sylvan Spring collected July 23, 2018. Absorbance indicated that media containing pine needle broth poorly support life, whereas media containing yeast extract revealed a positive increase in growth. Excitation-Emission Matrix Spectra of the all media conditions indicated changes in DOM composition throughout the trial. There were limited differences between the inoculated and uninoculated samples suggesting that the DOM composition change in this study was dominated by the two-month incubation at 84ºC more than biotic processes. Sequencing performed on a sediment sample collected from Sylvan Spring indicated five main order of prokaryotic phyla: Aquificales, Desulfurococcales, Thermoproteales, Thermodesulfobacteriales, and Crenarchaeota. These organisms are not regarded as heterotrophic microbes, so the lack of significant biotic changes in DOM could be a result of these microorganisms not being able to utilize these enrichments as their main metabolic energy supply.

Contributors

Agent

Created

Date Created
  • 2019-05

153685-Thumbnail Image.png

Hydrogen isotopic systematics of nominally anhydrous phases in martian meteorites

Description

Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the

Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS).

This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth’s upper mantle.

Contributors

Agent

Created

Date Created
  • 2015

158359-Thumbnail Image.png

Quantifying the Timing and Controls of Magmatic Processes Associated with Volcanic Eruptions

Description

Volcanic eruptions can be serious geologic hazards, and have the potential to effect human life, infrastructure, and climate. Therefore, an understanding of the evolution and conditions of the magmas stored

Volcanic eruptions can be serious geologic hazards, and have the potential to effect human life, infrastructure, and climate. Therefore, an understanding of the evolution and conditions of the magmas stored beneath volcanoes prior to their eruption is crucial for the ability to monitor such systems and develop effective hazard mitigation plans. This dissertation combines classic petrologic tools such as mineral chemistry and thermometry with novel techniques such as diffusion chronometry and statistical modeling in order to better understand the processes and timing associated with volcanic eruptions. By examining zoned crystals from the fallout ash of Yellowstone’s most recent supereruption, my work shows that the rejuvenation of magma has the ability to trigger a catastrophic supereruption at Yellowstone caldera in the years (decades at most) prior to eruption. This provides one of the first studies to thoroughly identify a specific eruption trigger of a past eruption using the crystal record. Additionally, through experimental investigation, I created a novel diffusion chronometer with application to determine magmatic timescales in silicic volcanic systems (i.e., rhyolite/dacite). My results show that Mg-in-sanidine diffusion operates simultaneously by both a fast and slow diffusion path suggesting that experimentally-derived diffusion chronometers may be more complex than previously thought. When applying Mg-in-sanidine chronometry to zoned sanidine from the same supereruption at Yellowstone, the timing between rejuvenation and eruption is further resolved to as short as five months, providing a greater understanding of the timing of supereruption triggers. Additionally, I developed a new statistical model to examine the controls on a single volcano’s distribution of eruptions through time, therefore the controls on the timing between successive eruptions, or repose time. When examining six Cascade volcanoes with variable distribution patterns through time, my model shows these distributions are not result of sampling bias, rather may represent geologic processes. There is a robust negative correlation between average repose time and average magma composition (i.e., SiO2), suggesting this may be a controlling factor of long-term repose time at Cascade volcanoes. Together, my work provides a better vision for forecasting models to mitigate potential destruction.

Contributors

Agent

Created

Date Created
  • 2020

158429-Thumbnail Image.png

Investigations into Crustal Composition and Oxidative Weathering in the Archean

Description

Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere.

Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify experimentally at relevantly low concentrations of O2. With newly developed O2 sensors, weathering experiments were conducted to measure the rate of sulfide oxidation at Archean levels of O2, a level three orders of magnitude lower than previous experiments. The rate laws produced, combined with weathering models, indicate that crustal sulfide oxidation by O2 was possible even in a low O2 Archean atmosphere.

Given the experimental results, it is expected that crustal delivery of bio-essential trace metals (such as Mo) from sulfide weathering was active even prior to the oxygenation of Earth’s atmosphere. Mo is a key metal for biological N2 fixation and its ancient use is evidenced by N isotopes in ancient sedimentary rocks. However, it is typically thought that Mo was too low to be effectively bioavailable early in Earth’s history, given the low abundances of Mo found in ancient sediments. To reconcile these observations, a computational model was built that leverages isotopic constraints to calculate the range of seawater concentrations possible in ancient oceans. Under several scenarios, bioavailable concentrations of seawater Mo were attainable and compatible with the geologic record. These results imply that Mo may not have been limiting for early metabolisms.

Titanium (Ti) isotopes were recently proposed to trace the evolution of the ancient continental crust, and have the potential to trace the distribution of other trace metals during magmatic differentiation. However, significant work remains to understand fully Ti isotope fractionation during crust formation. To calibrate this proxy, I carried out the first direct measurement of mineral-melt fractionation factors for Ti isotopes in Kilauea Iki lava lake and built a multi-variate fractionation law for Ti isotopes during magmatic differentiation. This study allows more accurate forward-modeling of isotope fractionation during crust differentiation, which can now be paired with weathering models and ocean mass balance to further reconstruct the composition of Earth’s early continental crust, atmosphere, and oceans.

Contributors

Agent

Created

Date Created
  • 2020

157574-Thumbnail Image.png

Radiation Damage and Helium Diffusion in Mineral Chronometers

Description

A mineral’s helium content reflects a balance between two competing processes: accumulation by radioactive decay and temperature-dependent diffusive loss. (U-Th)/He dating of zircon and other uranium and thorium-bearing minerals provides

A mineral’s helium content reflects a balance between two competing processes: accumulation by radioactive decay and temperature-dependent diffusive loss. (U-Th)/He dating of zircon and other uranium and thorium-bearing minerals provides insight into the temperature histories of rocks at or near Earth’s surface that informs geoscientists’ understanding of tectonic and climate-driven exhumation, magmatic activity, and other thermal events. The crystal structure and chemistry of minerals affect helium diffusion kinetics, recorded closure temperatures, and interpretations of (U-Th)/He datasets. I used empirical and experimental methods to investigate helium systematics in two minerals chronometers: zircon and xenotime.

The same radioactivity that makes zircon a valuable chronometer damages its crystal structure over time and changes zircon helium kinetics. I used a zircon, titanite, and apatite (U-Th)/He dataset combined with previously published data and a new thermal model to place empirical constraints on the closure temperature for helium in a suite of variably damaged zircon crystals from the McClure Mountain syenite of Colorado. Results of this study suggest that the widely-used zircon damage accumulation and annealing model (ZRDAAM) does not accurately predict helium closure temperatures for a majority of the dated zircons. Detailed Raman maps of Proterozoic zircon crystals from the Lyon Mountain Granite of New York document complex radiation damage zoning. Models based on these results suggest that most ancient zircons are likely to exhibit intracrystalline variations in helium diffusivity due to radiation damage zoning, which may, in part, explain discrepancies between my empirical findings and ZRDAAM.

Zircon crystallography suggests that helium diffusion should be fastest along the crystallographic c-axis. I used laser depth profiling to show that diffusion is more strongly anisotropic than previously recognized. These findings imply that crystal morphology affects the closure temperature for helium in crystalline zircon. Diffusivity and the magnitude of diffusive anisotropy decrease with low doses of radiation damage.

Xenotime would make a promising (U-Th)/He thermochronometer if its helium kinetics were better known. I performed classic step-wise degassing experiments to characterize helium diffusion in xenotime FPX-1. Results suggest that this xenotime sample is sensitive to exceptionally low temperatures (∼50 °C) and produces consistent (U-Th)/He dates.

Contributors

Agent

Created

Date Created
  • 2019

155856-Thumbnail Image.png

The Late Cenozoic Climatic and Tectonic Evolution of the Mount Everest Region, Central Himalaya

Description

The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create

The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s most significant rain shadows. Also, glacial and fluvial processes eroded the Everest massif over shorter timescales. In this work, I review new bedrock and detrital thermochronological and geochronological data and both one- and two-dimensional thermal-mechanical modeling that provides insights on the age range and rates of tectonic and erosional processes in this region.

A strand of the South Tibetan detachment system (STDS), a series of prominent normal-sense structures that dip to the north and strike along the Himalayan spine, is exposed in the Rongbuk valley near Everest. Using thermochronometric techniques, thermal-kinematic modeling, and published (U-Th)/Pb geochronology, I show exhumation rates were high (~3-4 mm/a) from at least 20 to 13 Ma because of slip on the STDS. Subsequently, exhumation rates dropped drastically to ≤ 0.5 mm/a and remain low today. However, thermochronometric datasets and thermal-kinematic modeling results from Nepal south of Everest reveal a sharp transition in cooling ages and exhumation rates across a major knickpoint in the river profile, corresponding to the modern-day Himalayan rainfall transition. To the north of this transition, exhumation histories are similar to those in Tibet. Conversely, < 3 km south of the transition, exhumation rates were relatively low until the Pliocene, when they increased to ~4 mm/a before slowing at ~3 Ma. Such contrasting exhumation histories over a short distance suggest that bedrock exhumation rates correlate with modern precipitation patterns in deep time, however, there are competing interpretations regarding this correlation.

My work also provides insights regarding how processes of glacial erosion act in a glacio-fluvial valley north of Everest. Integrated laser ablation U/Pb and (U-Th)/He dating of detrital zircon from fluvial and moraine sediments reveal sourcing from distinctive areas of the catchment. In general, the glacial advances eroded material from lower elevations, while the glacial outwash system carries material from higher elevations.

Contributors

Agent

Created

Date Created
  • 2017