Matching Items (1)
129359-Thumbnail Image.png
Description

To test reproducibility of a technical specification under development for potential-induced degradation (PID) and polarization, three crystalline silicon module types were distributed in five replicas each to five laboratories. Stress tests were performed in environmental chambers at 60 °C, 85% relative humidity, 96 h, and with module nameplate system voltage

To test reproducibility of a technical specification under development for potential-induced degradation (PID) and polarization, three crystalline silicon module types were distributed in five replicas each to five laboratories. Stress tests were performed in environmental chambers at 60 °C, 85% relative humidity, 96 h, and with module nameplate system voltage applied. Results from the modules tested indicate that the test protocol can discern susceptibility to PID according to the pass/fail criteria with acceptable consistency from lab to lab; however, areas for improvement are indicated to achieve better uniformity in temperature and humidity on the module surfaces. In the analysis of variance of the results, 6% of the variance was attributed to laboratory influence, 34% to module design, and 60% to variability in test results within a given design. Testing with the additional factor of illumination with ultraviolet light slowed or arrested the degradation. Testing at 25 °C with aluminum foil as the module ground was also examined for comparison. The foil, as tested, did not itself achieve consistent contact to ground at all surfaces, but methods to ensure more consistent grounding were found and proposed. The rates of degradation in each test are compared, and details affecting the rates are discussed.

ContributorsHacke, Peter (Author) / Terwilliger, Kent (Author) / Glick, Stephen (Author) / Tamizhmani, Govindasamy (Author) / Tatapudi, Sai Ravi Vasista (Author) / Stark, Cameron (Author) / Koch, Simon (Author) / Weber, Thomas (Author) / Berghold, Juliane (Author) / Hoffmann, Stephan (Author) / Koehl, Michael (Author) / Dietrich, Sascha (Author) / Ebert, Matthias (Author) / Mathiak, Gerhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01