Matching Items (6)
189282-Thumbnail Image.png
Description
Seed awns (Erodium and Pelargonium) bury themselves into ground for germination usinghygroscopic coiling and uncoilingmovements. Similarly,wormlizards (Amphisbaenia) create tunnels for habitation by oscillating their heads along the long axis of the trunks. Inspired by these burrowing strategies, this research aims to understand these mechanisms from a soil mechanics perspective, investigate the factors influencing

Seed awns (Erodium and Pelargonium) bury themselves into ground for germination usinghygroscopic coiling and uncoilingmovements. Similarly,wormlizards (Amphisbaenia) create tunnels for habitation by oscillating their heads along the long axis of the trunks. Inspired by these burrowing strategies, this research aims to understand these mechanisms from a soil mechanics perspective, investigate the factors influencing penetration resistance, and develop a self-burrowing technology for subterranean explorations. The rotational movements of seed awns, specifically their coiling and uncoiling movements, were initially examined using the Discrete Element Method (DEM) under shallow and dry conditions. The findings suggest that rotation reduces penetration resistance by decreasing penetrator-particle contact number and the force exerted, and by shifting the contact force away from vertical direction. The effects of rotation were illustrated through the force chain network, displacement field, and particle trajectories, supporting the "force chain breakage" hypothesis and challenging the assumptions of previous analytical models. The factors reducing penetration resistance were subsequently examined, both numerically and experimentally. The experimental results link the reduction of horizontal penetration resistance to embedment depth and penetrator geometry. Notably, both numerical and experimental results confirm that the reduction of penetration resistance is determined by the relative slip velocity, not by the absolute values. The reduction initially spikes sharply with the relative slip velocity, then increases at a slower rate, leveling off at higher relative slip velocities. Additional findings revealed a minimal impact of relative density, particle shape, and inertial number on penetration resistance reduction. Conversely, interface friction angle appeared to increase the reduction, while penetrator roundness and confining pressure decreased it. The investigation also extended to the effect of rotational modes on the reduction of penetration resistance. Reductions between cone-continuous rotation (CCR) and cone-oscillatory rotation (COR) cases were i comparable. However, whole-body-continuous rotation (WCR) yielded a higher reduction under the same relative slip velocities. Interestingly, the amplitude of oscillation movement demonstrated a negligible effect on the reduction. Lastly, a self-burrowing soft robot was constructed based on these insights. Preliminary findings indicate that the robot can move horizontally, leveraging a combination of extensioncontraction and rotational movements.
ContributorsTang, Yong (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
187412-Thumbnail Image.png
Description
It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives

It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives a seed awn to bury itself like a corkscrew, while sandfish skinks use undulatory swimming, which can be thought of as a 2D version of helical motion. Studying burrowing behavior aims to understand how animals navigate underground, whether in their natural burrows or underground habitats, and to implement this knowledge in solving geotechnical penetration problems. Underground horizontal burrowing is challenging due to overcoming the resistance of interaction forces of granular media to move forward. Inspired by the burrowing behavior of seed-awn and sandfish skink, a horizontal self-burrowing robot is developed. The robot is driven by two augers and stabilized by a fin structure. The robot’s burrowing behavior is studied in a laboratory setting. It is found that rotation and propulsive motion along the axis of the auger’s helical shape significantly reduce granular media’s resistance against horizontal penetration by breaking kinematic symmetry or granular media boundary. Additional thrusting and dragging tests were performed to examine the propulsive and resistive forces and unify the observed burrowing behaviors. The tests revealed that the rotation of an auger not only reduces the resistive force and generates a propulsive force, which is influenced by the auger geometry, rotational speed, and direction. As a result, the burrowing behavior of the robot can be predicted using the geometry-rotation-force relations.
ContributorsShaharear, Md Ragib (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
157789-Thumbnail Image.png
Description
The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation

The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation of calcium carbonate minerals, bonding soil particles and filling the pores. Microbial Induced Desaturation and Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize soils through mineral precipitation, but also through production of biogas, which can mitigate earthquake induced liquefaction by desaturation of the soil. Empirical relationships have been established, which relate the amount of products of these biochemical processes to the engineering properties of treated soils. However, these engineering properties may vary significantly depending on the biomineral and biogas formation mechanism and distribution patterns at pore-scale. This research focused on the pore-scale characterization of biomineral and biogas formations in porous media.

The pore-scale characteristics of calcium carbonate precipitation via EICP and biogenic gas formation via MIDP were explored by visual observation in a transparent porous media using a microfluidic chip. For this purpose, an imaging system was designed and image processing algorithms were developed to analyze the experimental images and detect the nucleation and growth of precipitated minerals and formation and migration mechanisms of gas bubbles within the microfluidic chip. Statistical analysis was performed based on the processed images to assess the evolution of biomineral size distribution, the number of precipitated minerals and the porosity reduction in time. The resulting images from the biomineralization study were used in a numerical simulation to investigate the relation between the mineral distribution, porosity-permeability relationships and process efficiency. By comparing biogenic gas production with abiotic gas production experiments, it was found that the gas formation significantly affects the gas distribution and resulting degree of saturation. The experimental results and image analysis provide insight in the kinetics of the precipitation and gas formation processes and their resulting distribution and related engineering properties.
ContributorsKim, Daehyun (Author) / van Paassen, Leon (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Mahabadi, Nariman (Committee member) / Tao, Junliang (Committee member) / Jang, Jaewon (Committee member) / Arizona State University (Publisher)
Created2019
Description
The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the

The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the perspective of soil mechanics. In this study, the razor clam was observed to burrow out of sands simply by extending and contracting its foot periodically. This upward burrowing gait is much simpler than its downward burrowing gait, which also involves opening/closing of the shell and dilation of the foot. The upward burrowing gait inspired the design of a self-burrowing-out soft robot, which drives itself out of sands naturally by extension and contraction through pneumatic inflation and deflation. A simplified analytical model was then proposed and explained the upward burrowing behavior of the robot and razor clams as the asymmetric nature of soil resistances applied on both ends due to the intrinsic stress gradient of sand deposits. To burrow downward, additional symmetry-breaking features are needed for the robot to increase the resistance in the upward burrowing direction and to decrease the resistance in the downward burrowing direction. A potential approach is by incorporating friction anisotropy, which was then experimentally demonstrated to affect the upward burrowing of the soft robot. The downward burrowing gait of razor clams provides another inspiration. By exploring the analogies between the downward burrowing gait and in-situ soil characterization methods, a clam-inspired shape-changing penetrator was designed and penetrated dry granular materials both numerically and experimentally. Results demonstrated that the shell opening not only contributes to forming a penetration anchor by compressing the surrounding particles, but also reduces the foot penetration resistance temporally by creating a stress arch above the foot; the shell closing facilitates the downward burrowing by reducing the friction resistance to the subsequent shell retraction. Findings from this research shed lights on the future design of a clam-inspired self-burrowing robot.
ContributorsHuang, Sichuan (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Zapata, Claudia (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2020
162008-Thumbnail Image.png
Description
Bridge scour at piers is a major problem for design and for maintaining old infrastructure. The current methods require their own upkeep and there may be better ways to mitigate scour. I looked to the mangrove forests of coastal environments for inspiration and have developed a 2D model to test

Bridge scour at piers is a major problem for design and for maintaining old infrastructure. The current methods require their own upkeep and there may be better ways to mitigate scour. I looked to the mangrove forests of coastal environments for inspiration and have developed a 2D model to test the efficacy of placing a mangrove-root inspired system to mitigate scour. My model tests the hydrodynamics of the root systems, but there are additional benefits that can be used as bioinspiration in the future (altering the surrounding chemistry and mechanical properties of the soil).Adding a mangrove inspired minipile system to bridge piers changes scour parameters within my 2D COMSOL models. For the volume of material added, the minipiles compare favorably to larger sacrificial piles as they reduce A_wcz and 〖τ'〗_max by similar (or even better) amounts. These two parameters are indicators of scour in the field. Within the minipile experiments, it is more beneficial to place them upstream of the main bridge pier as their own ‘mangrove forest.’ The value of A_wcz and 〖τ'〗_max for complex 2D models of scour is unclear and physical experiments need to be performed. The model geometry is based on the dimensions of the experimental flume to be used in future studies and the model results have not yet been verified through experiments and field trials. Scale effects may be present which cannot be accounted for in the 2D models. Therefore future work should be conducted to test ‘mangrove forest’ minipile systems in 3D space, in flume experiments, and in field trials.
ContributorsEnns, Andrew Carl (Author) / van Paassen, Leon (Thesis advisor) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2021
190700-Thumbnail Image.png
Description
Some subterranean animals, such as mole-rats, can burrow underground, sense the environment around them, and communicate with each other. Inspired by the mole-rats, this dissertation is dedicated to developing an active wireless underground sensor network (WUSN) for active underground exploration. Special attention is paid to two key functions: wireless underground

Some subterranean animals, such as mole-rats, can burrow underground, sense the environment around them, and communicate with each other. Inspired by the mole-rats, this dissertation is dedicated to developing an active wireless underground sensor network (WUSN) for active underground exploration. Special attention is paid to two key functions: wireless underground data transmission, and underground self-burrowing. In this study, a wireless underground communication system based on seismic waves was developed. The system includes a bio-inspired vibrational source, an accelerometer as the receiver, and a set of algorithms for encoding and decoding information. With the current design, a maximum transmission bit rate of 16–17 bits per second and a transmission distance of 80 cm is achieved. The transmission range is limited by the size of container used in the laboratory experiments. The bit error ratio is as low as 0.1%, demonstrating the robustness of the algorithms. The performance of the developed system shows that seismic waves produced by vibration can be used as an information carrier and can potentially be implemented in the active WUSNs. A minimalistic horizontal self-burrowing robot was designed. The robot mainly consists of a tip (flat, cone, or auger), and a pair of cylindrical parts. The robot can achieve extension-contraction with the utilization of a linear actuator and have options for tip rotation with an embedded gear motor. Using a combined numerical simulation and laboratory testing approach, symmetry-breaking is validated to be the key to underground burrowing. The resistance-displacement curves during the extension-contraction cycles of the robot can be used to quantify the overall effect of asymmetries and estimate the burrowing behavior of the robots. Findings from this research shed light on the future development of self-burrowing robots and active WUSNs.
ContributorsZhong, Yi (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Martinez, Alejandro (Committee member) / Arizona State University (Publisher)
Created2023