Matching Items (7)

128317-Thumbnail Image.png

Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Ra

Description

Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic

Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.

Contributors

Agent

Created

Date Created
  • 2016-12-08

134448-Thumbnail Image.png

Early Life Stress: An Increased Risk of Schizophrenia through Activation of the Complement Component Pathway

Description

Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response

Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response is strongly associated with schizophrenia. In the brain, activity of C4 leads to dendritic pruning, a process that may be causal in disease progression. Environmental factors, such as early life exposure to significant stressors also associate with increased risk of schizophrenia in later life. My hypothesis is that these factors do not act independently, but rather in tandem to influence disease etiology.
This hypothesis is supported by previous studies demonstrating that stress-induced elevation of glucocorticoids increases the transcription of C4. I propose that activated glucocorticoid receptors directly increase C4 protein expression as a transcription factor activator. Additionally, I propose that activated glucocorticoid receptors inhibit the expression of the transcription factor nuclear factor-light-chain-enhancer of activated B cells (NF-κB), thereby leading to decreased expression of the C4 inhibitor CUB and Sushi multiple domains 1 (CSMD1).
Glucocorticoid receptors and C4 are richly expressed in the hippocampus, a region critical in memory consolidation, spatial, and declarative memory. I propose that stress-induced upregulation of C4 activity in the hippocampus promotes excessive synaptic pruning, contributing to specific deficits and hippocampal shrinkage seen in schizophrenia. Stress exposure during fetal development and adolescence likely acts through the proposed mechanisms to increase hippocampal C4 activity and subsequent schizophrenia risk. These mechanisms may reveal novel interactions between environmental and genetic risk factors in the etiology of schizophrenia through complement activation.

Contributors

Agent

Created

Date Created
  • 2017-05

135225-Thumbnail Image.png

Chronic Variable Stress Effects on Anxiety and Expression of Organic Cation Transporter 3

Description

Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select

Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select brain regions via organic cation transporters (OCTs), a family of nonselective monoamine transporters. OCTs are thought to complement the actions of selective monoamine transporters in the brain by helping to clear monoamines from the extracellular space; thus, assisting to terminate the monoamine signal. Of particular interest, stress hormones (corticosterone; CORT) inhibit OCT3-mediated transport of monoamine, to putatively lead to prolonged monoamine signaling. It has been demonstrated that stress levels of CORT block OCT3 transport in the rat hypothalamus, an effect that likely underlies the rapid, stress-induced increase in local monoamines. We examined the effect of chronic variable stress (CVS) on the development of mood disorders and OCT3 expression in limbic and hypothalamic regions of the rat brain. Animals subjected to CVS (14-days with random stressor exposure two times/day) showed reduced body weight gain, indicating that CVS was perceived as stressful. However, behavioral tests of anxiety and depressive-like behaviors in rats showed no group differences. Although there were no behavioral effects of stress, molecular analysis revealed that there were stress-related changes in OCT3 protein expression. In situ hybridization data confirmed that OCT3 mRNA is expressed in the hippocampus, amygdala, and hypothalamus. Analysis of Western blot data by two-way ANOVA revealed a significant treatment effect on OCT3 protein levels, with a significant decrease in OCT3 protein in the amygdala and hippocampus in CVS rats, compared to controls. These data suggest an important role for CORT sensitive OCT3 in the reduction of monoamine clearance during stress.

Contributors

Agent

Created

Date Created
  • 2016-05

137532-Thumbnail Image.png

Localization of the Organic Cation Transporters (OCT) and the Quantification of Organic Cation Transport and Serotonergic Gene Transcription in the Rat Brain

Description

The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological

The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.

Contributors

Agent

Created

Date Created
  • 2013-05

135346-Thumbnail Image.png

Adult Cytogenesis and Reproductive Regulation in the American Bullfrog

Description

The purpose of the present study was to investigate seasonal changes in cell proliferation in the brains of adult American bullfrog. Our main question was whether there are seasonal differences

The purpose of the present study was to investigate seasonal changes in cell proliferation in the brains of adult American bullfrog. Our main question was whether there are seasonal differences in the proliferation and/or differentiation of newborn brain cells into arginine vasotocin- (AVT) or gonadotropin releasing hormone- (GnRH) producing neurons that might regulate bullfrog reproduction. . Bullfrogs in four distinct seasonal groups received injections of bromodeoxyuridine (BrdU), a thymidine analog that is taken up by dividing cells, and then euthanized six weeks later. Using doubleimmunofluorescence procedures to visualize BrdU and AVT or GnRH, we found no evidence for newborn AVT- or GnRH-ergic cells, but observed newborn cells in close proximity to AVT and GnRH cells. My project was a follow-up study to explore seasonal changes in adult cytogenesis related to AVT and GnRH terminal fields. GnRH fiber density fluctuated seasonally in the rostral pre-optic area (RPOA) and lateral septum (LS), and newborn cell numbers changed seasonally in the amygdala (AM) and RPOA. Seasonal differences in plasma testosterone concentrations were negatively related to GnRH fiber density in the LS. These results reinforce the seasonality of reproductive signaling and adult cytogenesis and support a role for seasonal steroid-peptide hormone interactions in modulating GnRH levels. Our results suggest a relationship between seasonal adult cytogenesis and reproduction, and set the stage for further research into the nature of this relationship.

Contributors

Agent

Created

Date Created
  • 2013-05

129671-Thumbnail Image.png

Clade C HIV-1 isolates circulating in Southern Africa exhibit a greater frequency of dicysteine motif-containing Tat variants than those in Southeast Asia and cause increased neurovirulence

Description

Background: HIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated

Background: HIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated dementia (HAD) in approximately 15% to 30% of the infected individuals, HIV-1C has been linked with lower prevalence of HAD (0 to 6%) in India and Ethiopia. However, recent studies report a higher prevalence of HAD in South Africa, Zambia and Botswana, where HIV-1C infections predominate. Therefore, we examined whether Southern African HIV-1C is genetically distinct and investigated its neurovirulence. HIV-1 Tat protein is a viral determinant of neurocognitive dysfunction. Therefore, we focused our study on the variations seen in tat gene and its contribution to HIV associated neuropathogenesis. Results: A phylogenetic analysis of tat sequences of Southern African (South Africa and Zambia) HIV isolates with those from the geographically distant Southeast Asian (India and Bangladesh) isolates revealed that Southern African tat sequences are distinct from Southeast Asian isolates. The proportion of HIV - 1C variants with an intact dicysteine motif in Tat protein (C30C31) was significantly higher in the Southern African countries compared to Southeast Asia and broadly paralleled the high incidence of HAD in these countries. Neuropathogenic potential of a Southern African HIV-1C isolate (from Zambia; HIV-1C(1084i)), a HIV-1C isolate (HIV-1(IndieC1)) from Southeast Asia and a HIV-1B isolate (HIV-1(ADA)) from the US were tested using in vitro assays to measure neurovirulence and a SCID mouse HIV encephalitis model to measure cognitive deficits. In vitro assays revealed that the Southern African isolate, HIV-1C(1084i) exhibited increased monocyte chemotaxis and greater neurotoxicity compared to Southeast Asian HIV-1C. In neurocognitive tests, SCID mice injected with MDM infected with Southern African HIV-1C(1084i) showed greater cognitive dysfunction similar to HIV-1B but much higher than those exposed to Southeast Asian HIV - 1C. Conclusions: We report here, for the first time, that HIV-1C from Southern African countries is genetically distinct from Southeast Asian HIV-1C and that it exhibits a high frequency of variants with dicysteine motif in a key neurotoxic HIV protein, Tat. Our results indicate that Tat dicysteine motif determines neurovirulence. If confirmed in population studies, it may be possible to predict neurocognitive outcomes of individuals infected with HIV-1C by genotyping Tat.

Contributors

Agent

Created

Date Created
  • 2013-08-30

154212-Thumbnail Image.png

On the cognitive impact of endogenous and exogenous hormone exposures across the lifespan

Description

Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in

Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on short- and long- term brain health. The goal of my dissertation was to understand how lifetime hormone exposures shape the female cognitive phenotype using several innovative approaches, including a new human spatial working memory task, the human radial arm maze (HRAM), and several rodent menopause models with variants of clinically used hormone treatments. Using the HRAM (chapter 2) and established human neuropsychological tests, I determined males outperformed females with high endogenous or exogenous estrogen levels on visuospatial tasks and the spatial working memory HRAM (chapter 3). Evaluating the synthetic estrogen in contraceptives, ethinyl estradiol (EE), I found a high EE dose impaired spatial working memory in ovariectomized (Ovx) rats, medium and high EE doses reduced choline-acetyltransferace-immunoreactive neuron population estimates in the basal forebrain following Ovx (chapter 4), and low EE impaired spatial cognition in ovary-intact rats (chapter 5). Assessing the impact of several clinically-used HTs, I identified a window of opportunity around ovarian follicular depletion outside of which the HT conjugated equine estrogens (CEE) was detrimental to spatial memory (chapter 6), as well as therapeutic potentials for synthetic contraceptive hormones (chapter 9) and bioidentical estradiol (chapter 7) during and after the transition to menopause. Chapter 6 and 7 findings, that estradiol and Ovx benefitted cognition after the menopause transition, but CEE did not, are perhaps due to the negative impact of ovarian-produced, androstenedione-derived estrone; indeed, blocking androstenedione’s conversion to estrone prevented its cognitive impairments (chapter 8). Finally, I determined that EE combined with the popular progestin levonorgestrel benefited spatial memory during the transition to menopause, a profile not seen with estradiol, levonorgestrel, or EE alone (chapter 9). This work identifies several cognitively safe, and enhancing, hormonal treatment options at different time points throughout female aging, revealing promising avenues toward optimizing female health.

Contributors

Agent

Created

Date Created
  • 2015