Matching Items (5)

Filtering by

Clear all filters

128263-Thumbnail Image.png

A Graphical Approach to a Model of a Neuronal Tree With a Variable Diameter

Description

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.

Contributors

Created

Date Created
2014-07-09

128667-Thumbnail Image.png

The Riccati System and a Diffusion-Type Equation

Description

We discuss a method of constructing solutions of the initial value problem for diffusion-type equations in terms of solutions of certain Riccati and Ermakov-type systems. A nonautonomous Burgers-type equation is also considered. Examples include, but are not limited to the

We discuss a method of constructing solutions of the initial value problem for diffusion-type equations in terms of solutions of certain Riccati and Ermakov-type systems. A nonautonomous Burgers-type equation is also considered. Examples include, but are not limited to the Fokker-Planck equation in physics, the Black-Scholes equation and the Hull-White model in finance.

Contributors

Created

Date Created
2014-05-15

129677-Thumbnail Image.png

Spiral Laser Beams in Inhomogeneous Media

Description

Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar

Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

Contributors

Agent

Created

Date Created
2013-08-15

129678-Thumbnail Image.png

The Minimum-Uncertainty Squeezed States for Atoms and Photons in a Cavity

Description

We describe a multi-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of the corresponding maximal kinematical invariance group on the standard ground state solution. We show that

We describe a multi-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of the corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions and the corresponding photon statistics are discussed. Some applications to quantum optics, cavity quantum electrodynamics and superfocusing in channelling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.

Contributors

Created

Date Created
2013-08-15

129676-Thumbnail Image.png

Wigner Function Approach to Oscillating Solutions of the 1D-Quintic Nonlinear Schrödinger Equation

Description

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property," namely a periodic in time total localization of wave packets at some

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property," namely a periodic in time total localization of wave packets at some finite spatial points without violation of the Heisenberg uncertainty principle, is analyzed in this nonlinear model.

Contributors

Agent

Created

Date Created
2013-08-15