Matching Items (30)
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
136359-Thumbnail Image.png
Description
Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs

Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs of cystic fibrosis patients and is deadly. For these reasons, P. aeruginosa has been heavily studied in order to determine a solution to antibiotic resistance. One possible solution is the development of synbodies, which have been developed at the Biodesign Institute at Arizona State University. Synbodies are constructed from peptides that have antibacterial activity and were determined to have specificity for a target bacterium. These synbodies were tested in this study to determine whether or not some of them are able to inhibit P. aeruginosa growth. P. aeruginosa can also form multicellular communities called biofilms and these are known to cause approximately 65% of all human infections. After conducting minimum inhibitory assays, the efficacy of certain peptides and synbodies against biofilm inhibition was assessed. A recent study has shown that low concentrations of a specific peptide can cause biofilm disruption, where the biofilm structure breaks apart and the cells within it disperse into the supernatant. Taking into account this study and peptide data regarding biofilm inhibition from Dr. Aurélie Crabbé’s lab, screened peptides were tested against biofilm to see if dispersion would occur.
Created2015-05
136379-Thumbnail Image.png
Description
Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy.

Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy. Beta lactam antibiotics used to be highly effective against S. aureus infections, but resistance mechanisms have rendered methicillin, oxacillin, and other beta lactam antibiotics ineffective against these infections. A promising avenue for MRSA treatment lies in the use of synthetic antibodies—molecules that bind with specificity to a given compound. Synbody 14 is an example of such a synbody, and has been designed with MRSA treatment in mind. Mouse model studies have even associated Syn14 treatment with reduced weight loss and morbidity in MRSA-infected mice. In this experiment, in vitro activity of Syn 14 and oxacillin was assessed. Early experiments measured Syn 14 and oxacillin’s effectiveness in inhibiting colony growth in growth media, mouse serum, and mouse blood. Syn14 and oxacillin had limited efficacy against USA300 strain MRSA, though interestingly it was noted that Syn14 outperformed oxacillin in mouse serum and whole mouse blood, indicating the benefits of its binding properties. A second experiment measured the impact that a mix of oxacillin and Syn 14 had on colony growth, as well as the effect of adding them simultaneously or one after the other. While use of either bactericidal alone did not show a major inhibitory effect on USA300 MRSA colony growth, their use in combination showed major decreases in colony growth. Moreover, it was found that unlike other combination therapies, Syn14 and oxacillin did not require simultaneous addition to MRSA cells to achieve inhibition of cell growth. They merely required that Syn14 be added first. This result suggests Syn14’s possible utility in therapeutic settings, as the time insensitivity of synergy removes a major hurdle to clinical use—the difficulty in ensuring that two drugs reach an affected area at the same time. Syn14 remains a promising antimicrobial agent, and further study should focus on its precise mechanism of action and suitability in clinical treatment of MRSA infections.
ContributorsMichael, Alexander (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
134018-Thumbnail Image.png
Description
Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru

Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru was used as a case study of an emerging and rapidly spreading disease in a developing nation. Wherein, clinical diagnosis of HBV infections in at-risk communities such the Amazon Region and the Andes Mountains are challenging due to a myriad of reasons. High prices of clinical diagnosis and limited access to treatment are alone the most significant deterrent for individuals living in at-risk communities to get the much need help. Additionally, limited testing facilities, lack of adequate testing policies or national guidelines, poor laboratory capacity, resource-limited settings, geographical isolation, and public mistrust are among the chief reasons for low HBV testing. Although, preventative vaccination programs deployed by the Peruvian health officials have reduced the number of infected individuals by year and region. To significantly reduce or eradicate HBV in hyperendemic areas and countries such as Peru, preventative clinical diagnosis and vaccination programs are an absolute necessity. Consequently, the need for a portable low-priced diagnostic platform for the detection of HBV and other diseases is substantial and urgent not only in Peru but worldwide. Some of these concerns were addressed by designing a low-cost, rapid detection platform. In that, an immunosignature technology (IMST) slide used to test for reactivity against the presence of antibodies in the serum-sample was used to test for picture resolution and clarity. IMST slides were scanned using a smartphone camera placed on top of the designed device housing a circuit of 32 LED lights at 647 nm, an optical magnifier at 15X, and a linear polarizing film sheet. Tow 9V batteries powered the scanning device LED circuit ensuring enough lighting. The resulting pictures from the first prototype showed that by lighting the device at 647 nm and using a smartphone camera, the camera could capture high-resolution images. These results conclusively indicate that with any modern smartphone camera, a small box lighted to 647 nm, and optical magnifier; a powerful and expensive laboratory scanning machine can be replaced by another that is inexpensive, portable and ready to use anywhere.
ContributorsMakimaa, Heyde (Author) / Holechek, Susan (Thesis director) / Stafford, Phillip (Committee member) / Jayasuriya, Suren (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133993-Thumbnail Image.png
Description
Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization

Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization methods address an antibody's affinity for its cognate sequence but overlook other important aspects of binding behavior such as off-target binding interactions. The purpose of this study is to demonstrate how the binding intensity between an antibody and a library of random-sequence peptides, otherwise known as an immunosignature, can be evaluated to determine antibody specificity and polyreactivity. A total of 24 commercially available monoclonal antibodies were assayed on 125K and 330K peptide microarrays and analyzed using a motif clustering program to predict candidate epitopes within each antigen sequence. The results support the further development of immunosignaturing as an antibody characterization tool that is relevant to both therapeutic and non-therapeutic antibodies.
ContributorsDai, Jennifer T. (Author) / Stafford, Phillip (Thesis director) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149650-Thumbnail Image.png
Description
A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are

A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are discovered with peptide microarray technology. Nevertheless, the targets for unknown synbodies can also be discovered by searching through a protein mixture. The first part of this thesis mainly focuses on the process of target searching, which was performed with immunoprecipitation assays and mass spectrometry analysis. Proteins are pulled down from the cell lysate by certain synbodies, and then these proteins are identified using mass spectrometry. After excluding non-specific bindings, the interaction between a synbody and its real target(s) can be verified with affinity measurements. As a specific example, the binding between 1-4-KCap synbody and actin was discovered. This result proved the feasibility of the mass spectrometry based method and also suggested that a high throughput synbody discovery platform for the human proteome could be developed. Besides the application of synbody development, the peptide microarray technology can also be used for immunosignatures. The composition of all types of antibodies existing in one's blood is related to an individual's health condition. A method, called immunosignaturing, has been developed for early disease diagnosis based on this principle. CIM10K microarray slides work as a platform for blood antibody detection in immunosignaturing. During the analysis of an immunosignature, the data from these slides needs to be validated by using landing light peptides. The second part of this thesis focuses on the validation of the data. A biotinylated peptide was used as a landing light on the new CIM10K slides. The data was collected in several rounds of tests and indicated that the variation among landing lights was significantly reduced by using the newly prepared biotinylated peptide compared with old peptide mixture. Several suggestions for further landing light improvement are proposed based on the results.
ContributorsSun, Minyao (Author) / Johnston, Stephen Albert (Thesis advisor) / Diehnelt, Chris Wayne (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
149386-Thumbnail Image.png
Description
Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of the target protein, interactions are best characterized by an ensemble of possible bound configurations rather than a single “lock and key” fit. A model incorporating these factors is proposed and evaluated. A comprehensive dataset of 3,924 peptide-protein interface structures was extracted from the Protein Data Bank (PDB) and descriptors were computed characterizing the geometry and energetics of each interface. The characteristics of these interfaces are shown to be generally consistent with the proposed model, and heuristics for design and selection of peptide ligands are derived. The curated and energy-minimized interface structure dataset and a relational database containing the detailed results of analysis and energy modeling are made publicly available via a web repository. A novel analytical technique based on the proposed theoretical model, Virtual Scanning Probe Mapping (VSPM), is implemented in software to analyze the interaction between a target protein of known structure and a peptide of specified sequence, producing a spatial map indicating the most likely peptide binding regions on the protein target. The resulting predictions are shown to be superior to those of two other published methods, and support the validity of the stochastic binding model.
ContributorsEmery, Jack Scott (Author) / Pizziconi, Vincent B (Thesis advisor) / Woodbury, Neal W (Thesis advisor) / Guilbeau, Eric J (Committee member) / Stafford, Phillip (Committee member) / Taylor, Thomas (Committee member) / Towe, Bruce C (Committee member) / Arizona State University (Publisher)
Created2010
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description

Background: An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide

Background: An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and evaluate future studies in humans.

Results: In study one we identified possible diagnostic peptides for both lupus and altered behavior in the forced swim test. When comparing the results of study one to that of study two (carried out in a similar manner), we further identified potential peptides that may be diagnostic and predictive of both lupus and altered behavior in the forced swim test. We also characterized five potentially pathogenic brain-reactive autoantibodies, as well as suggested possible brain targets.

Conclusions: These results indicate that immunosignaturing could predict and diagnose lupus and its CNS manifestations. It can also be used to characterize pathogenic autoantibodies, which may help to better understand the underlying mechanisms of CNS-Lupus.

ContributorsWilliams, Stephanie (Author) / Stafford, Phillip (Author) / Hoffman, Steven (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-07
127830-Thumbnail Image.png
Description

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale synthesis. Any pathogen is then assayed on the chip to find peptides that bind or kill it. Peptides are combined in pairs as synbodies and further screened for activity and toxicity. The lead synbody can be quickly produced in large scale, with completion of the entire process in one week.

ContributorsJohnston, Stephen (Author) / Domenyuk, Valeriy (Author) / Gupta, Nidhi (Author) / Tavares Batista, Milene (Author) / Lainson, John (Author) / Zhao, Zhan-Gong (Author) / Lusk, Joel (Author) / Loskutov, Andrey (Author) / Cichacz, Zbigniew (Author) / Stafford, Phillip (Author) / Legutki, Joseph Barten (Author) / Diehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2017-12-14