Matching Items (7)

158767-Thumbnail Image.png

An Examination of The Path to Prescriptive Analytics

Description

The difficulty of demonstrating a significant return on investment from the use of advanced data analytics has led to a lack of utilization of this tool. The most likely explanation

The difficulty of demonstrating a significant return on investment from the use of advanced data analytics has led to a lack of utilization of this tool. The most likely explanation for this phenomenon is the difficulty of incorporating non-financial metrics in the higher levels of analysis that are fully salient and derived in a manner that can be understood and trusted by organizational leaders. Another challenge that has confounded the use of advanced analytics by the leadership of organizations is the widely accepted belief that models are oftentimes developed with an insufficient number of variables that are expected to have an impact, which inhibits extrapolation of results for use in real-world decision making. This research identifies factors that contribute to the underutilization of analytics models in managerial decisions by leadership of the produce industry, and explores a variety of potential tools including descriptive analytics and dashboards that are able to provide predictive, prescriptive, and more advanced cognitive methods of decision making for use by organizational leadership. By understanding the disconnect between availability of the advanced data analysis tools and use of such tools by organizational leadership, this research assists in identifying the programs and resources that should be developed and presented as opportunities for support in the industrial decision-making process. This dissertation explores why managers within the produce industry underutilize higher levels of data analytics and whether it is possible to increase their levels of cognitive comfort. It shows that by providing leadership with digestible and rudimentary business experiments, they become more comfortable with more complex data analytics and then are better able to utilize dashboards and other tools within their decision-making models. As experiments are explained to managers, they become as comfortable with conducting experiments as they are with dashboards, thus becoming comfortable with evaluating their benefits.

Contributors

Agent

Created

Date Created
  • 2020

156264-Thumbnail Image.png

A study of components of Pearson's chi-square based on marginal distributions of cross-classified tables for binary variables

Description

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error rate due to sparseness. Pearson's statistic can be decomposed into orthogonal components associated with the marginal distributions of observed variables, and an omnibus fit statistic can be obtained as a sum of these components. When the statistic is a sum of components for lower-order marginals, it has good performance for Type I error rate and statistical power even when applied to a sparse table. In this dissertation, goodness-of-fit statistics using orthogonal components based on second- third- and fourth-order marginals were examined. If lack-of-fit is present in higher-order marginals, then a test that incorporates the higher-order marginals may have a higher power than a test that incorporates only first- and/or second-order marginals. To this end, two new statistics based on the orthogonal components of Pearson's chi-square that incorporate third- and fourth-order marginals were developed, and the Type I error, empirical power, and asymptotic power under different sparseness conditions were investigated. Individual orthogonal components as test statistics to identify lack-of-fit were also studied. The performance of individual orthogonal components to other popular lack-of-fit statistics were also compared. When the number of manifest variables becomes larger than 20, most of the statistics based on marginal distributions have limitations in terms of computer resources and CPU time. Under this problem, when the number manifest variables is larger than or equal to 20, the performance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to confirmatory dichotomous variable factor analysis model, and the performance of Tollenaar and Mooijaart (2003) statistic were investigated.

Contributors

Agent

Created

Date Created
  • 2018

151307-Thumbnail Image.png

Factors affecting behavioral change through the use of computer-mediated technology

Description

This study explores the impact of feedback and feedforward and personality on computer-mediated behavior change. The impact of the effects were studied using subjects who entered information relevant to their

This study explores the impact of feedback and feedforward and personality on computer-mediated behavior change. The impact of the effects were studied using subjects who entered information relevant to their diet and exercise into an online tool. Subjects were divided into four experimental groups: those receiving only feedback, those receiving only feedforward, those receiving both, and those receiving none. Results were analyzed using regression analysis. Results indicate that both feedforward and feedback impact behavior change and that individuals with individuals ranking low in conscientiousness experienced behavior change equivalent to that of individuals with high conscientiousness in the presence of feedforward and/or feedback.

Contributors

Agent

Created

Date Created
  • 2012

151159-Thumbnail Image.png

The impact of subject indexes on semantic indeterminacy in enterprise document retrieval

Description

Ample evidence exists to support the conclusion that enterprise search is failing its users. This failure is costing corporate America billions of dollars every year. Most enterprise search engines are

Ample evidence exists to support the conclusion that enterprise search is failing its users. This failure is costing corporate America billions of dollars every year. Most enterprise search engines are built using web search engines as their foundations. These search engines are optimized for web use and are inadequate when used inside the firewall. Without the ability to use popularity-based measures for ranking documents returned to the searcher, these search engines must rely on full-text search technologies. The Information Science literature explains why full-text search, by itself, fails to adequately discriminate relevant from irrelevant documents. This failure in discrimination results in far too many documents being returned to the searcher, which causes enterprise searchers to abandon their searches in favor of re-creating the documents or information they seek. This dissertation describes and evaluates a potential solution to the problem of failed enterprise search derived from the Information Science literature: subject-aided search. In subject-aided search, full-text search is augmented with a search of subject metadata coded into each document based upon a hierarchically structured subject index. Using the Design Science methodology, this dissertation develops and evaluates three IT artifacts in the search for a solution to the wicked problem of enterprise search failure.

Contributors

Agent

Created

Date Created
  • 2012

151508-Thumbnail Image.png

Adoption and business value of mobile retail channel: a dependency perspective on mobile commerce

Description

Forrest Research estimated that revenues derived from mobile devices will grow at an annual rate of 39% to reach $31 billion by 2016. With the tremendous market growth, mobile banking,

Forrest Research estimated that revenues derived from mobile devices will grow at an annual rate of 39% to reach $31 billion by 2016. With the tremendous market growth, mobile banking, mobile marketing, and mobile retailing have been recently introduced to satisfy customer needs. Academic and practical articles have widely discussed unique features of m-commerce. For instance, hardware constraints such as small screens have led to the discussion of tradeoff between usability and mobility. Needs for personalization and entertainment foster the development of new mobile data services. Given distinct features of mobile data services, existing empirical literature on m-commerce is mostly from the consumer side and focuses on consumer perceptions toward these features and their adoption intentions. From the supply side, limited data availability in early years explains the lack of firm-level studies on m-commerce. Prior studies have shown that unclear market demand is a major reason that hinders firms' adoption of m-commerce. Given the advances of smart phones, especially the introduction of the iPhone in 2007, firms recently have started to incorporate various mobile information systems in their business operations. The study uses mobile retailing as the context and empirically assesses firms' migration to this new sales venue with a unique cross-sectional dataset. Despite the distinct features of m-commerce, m-Retailing is essentially an extended arm of e-Retailing. Thus, a dependency perspective is used to explore the link between a firm's e-Retail characteristics and the migration to m-Retailing. Rooted in the innovation diffusion theory, the first stage of my study assesses the decision of adoption that indicates whether a firm moves to m-Retailing and the extent of adoption that shows a firm's commitment to m-Retailing in terms of system implementation choices. In this first stage, I take a dependency perspective to examine the impacts of e-Retail characteristics on m-Retailing adoption. The second stage of my study analyzes conditions that affect business value of the m-Retail channel. I examine the association between system implementation choices and m-Retail performance while analyzing the effects of e-Retail characteristics on value realization. The two-stage analysis provides an exploratory assessment of firm's migration from e-Retailing to m-Retailing.

Contributors

Agent

Created

Date Created
  • 2013

151108-Thumbnail Image.png

Outsourcing of IT services: studies on diffusion and new theoretical perspectives

Description

Information technology (IT) outsourcing, including foreign or offshore outsourcing, has been steadily growing over the last two decades. This growth in IT outsourcing has led to the development of different

Information technology (IT) outsourcing, including foreign or offshore outsourcing, has been steadily growing over the last two decades. This growth in IT outsourcing has led to the development of different hubs of services across nations, and has resulted in increased competition among service providers. Firms have been using IT outsourcing to not only leverage advanced technologies and services at lower costs, but also to maintain their competitive edge and grow. Furthermore, as prior studies have shown, there are systematic differences among industries in terms of the degree and impact of IT outsourcing. This dissertation uses a three-study approach to investigate issues related to IT outsourcing at the macro and micro levels, and provides different perspectives for understanding the issues associated with IT outsourcing at a firm and industry level. The first study evaluates the diffusion patterns of IT outsourcing across industries at aggregate level and within industries at a firm level. In addition, it analyzes the factors that influence the diffusion of IT outsourcing and tests models that help us understand the rate and patterns of diffusion at the industry level. This study establishes the presence of hierarchical contagion effects in the diffusion of IT outsourcing. The second study explores the role of location and proximity of industries to understand the diffusion patterns of IT outsourcing within clusters using the spatial analysis technique of space-time clustering. It establishes the presence of simultaneous space and time interactions at the global level in the diffusion of IT outsourcing. The third study examines the development of specialized hubs for IT outsourcing services in four developing economies: Brazil, Russia, India, and China (BRIC). In this study, I adopt a theory-building approach involving the identification of explanatory anomalies, and propose a new hybrid theory called- knowledge network theory. The proposed theory suggests that the growth and development of the IT and related services sector is a result of close interactions among adaptive institutions. It is also based on new knowledge that is created, and which flows through a country's national diaspora of expatriate entrepreneurs, technologists and business leaders. In addition, relevant economic history and regional geography factors are important. This view diverges from the traditional view, wherein effective institutions are considered to be the key determinants of long-term economic growth.

Contributors

Agent

Created

Date Created
  • 2012

150731-Thumbnail Image.png

Knowledge sharing via social networking platforms in organizations

Description

Knowledge Management Systems have been actively promoted for decades within organizations but have frequently failed to be used. Recently, deployments of enterprise social networking platforms used for knowledge management have

Knowledge Management Systems have been actively promoted for decades within organizations but have frequently failed to be used. Recently, deployments of enterprise social networking platforms used for knowledge management have become commonplace. These platforms help harness the knowledge of workers by serving as repositories of knowledge as well as directories of knowledge holders. As with prior systems, a key challenge faced by organizations is how to initiate and maintain a minimum level of knowledge contributions. Existing IS literature on the causes of knowledge contributions shows conflicting findings. This work suggests that human factors, social networking platform technology and community factors, and environments internal to organizations are each necessary for understanding the causes of knowledge contributions. This work presents three studies that: 1) develop a framework for the analysis of knowledge contributions via social networking platforms, 2) demonstrate the impacts of different incentives and managerial controls, and 3) extend our understanding of group-level influences within organizations. With a better understanding of what drives knowledge contributions in a social networking platform used in organizations, we are better prepared as researchers to engage in research that reduces inconsistencies in the knowledge management literature, as well as more able to assist practitioners in designing optimal conditions for knowledge sharing within organizations.

Contributors

Agent

Created

Date Created
  • 2012