Matching Items (13)

133797-Thumbnail Image.png

Development and Evaluation of an Electrical Engineering and Math Curriculum Module for High School Students

Description

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.

Contributors

Agent

Created

Date Created
2018-05

154501-Thumbnail Image.png

Analysis and design of native file system enhancements for storage class memory

Description

As persistent non-volatile memory solutions become integrated in the computing ecosystem and landscape, traditional commodity file systems architected and developed for traditional block I/O based memory solutions must be reevaluated. A majority of commodity file systems have been architected

As persistent non-volatile memory solutions become integrated in the computing ecosystem and landscape, traditional commodity file systems architected and developed for traditional block I/O based memory solutions must be reevaluated. A majority of commodity file systems have been architected and designed with the goal of managing data on non-volatile storage devices such as hard disk drives (HDDs) and solid state drives (SSDs). HDDs and SSDs are attached to a computing system via a controller or I/O hub, often referred to as the southbridge. The point of HDD and SSD attachment creates multiple levels of translation for any data managed by the CPU that must be stored in non-volatile memory (NVM) on an HDD or SSD. Storage Class Memory (SCM) devices provide the ability to store data at the CPU and DRAM level of a computing system. A novel set of modifications to the ext2 and ext4 commodity file systems to address the needs of SCM will be presented and discussed. An in-depth analysis of many existing file systems, from multiple sources, will be presented along with an analysis to identify key modifications and extensions that would be necessary to execute file system on SCM devices. From this analysis, modifications and extensions have been applied to the FAT commodity file system for key functional tests that will be presented to demonstrate the operation and execution of the file system extensions.

Contributors

Agent

Created

Date Created
2016

154762-Thumbnail Image.png

Continuous assessment in agile learning using visualizations and clustering of activity data to analyze student behavior

Description

Software engineering education today is a technologically advanced and rapidly evolving discipline. Being a discipline where students not only design but also build new technology, it is important that they receive a hands on learning experience in the form of

Software engineering education today is a technologically advanced and rapidly evolving discipline. Being a discipline where students not only design but also build new technology, it is important that they receive a hands on learning experience in the form of project based courses. To maximize the learning benefit, students must conduct project-based learning activities in a consistent rhythm, or cadence. Project-based courses that are augmented with a system of frequent, formative feedback helps students constantly evaluate their progress and leads them away from a deadline driven approach to learning.

One aspect of this research is focused on evaluating the use of a tool that tracks student activity as a means of providing frequent, formative feedback. This thesis measures the impact of the tool on student compliance to the learning process. A personalized dashboard with quasi real time visual reports and notifications are provided to undergraduate and graduate software engineering students. The impact of these visual reports on compliance is measured using the log traces of dashboard activity and a survey instrument given multiple times during the course.

A second aspect of this research is the application of learning analytics to understand patterns of student compliance. This research employs unsupervised machine learning algorithms to identify unique patterns of student behavior observed in the context of a project-based course. Analyzing and labeling these unique patterns of behavior can help instructors understand typical student characteristics. Further, understanding these behavioral patterns can assist an instructor in making timely, targeted interventions. In this research, datasets comprising of student’s daily activity and graded scores from an under graduate software engineering course is utilized for the purpose of identifying unique patterns of student behavior.

Contributors

Agent

Created

Date Created
2016

155136-Thumbnail Image.png

The effect of embedded questions in programming education videos

Description

One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or

One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or problem solving questions. While these types of questions are relevant to computer science exams, they do not necessarily reflect a student’s ability to apply concepts by writing an original program to solve a novel problem.

This thesis investigates the effectiveness of including questions within instructional multimedia content to improve student performance on a related programming assignment. Similar techniques have proven effective in educational psychology research using other measures. The objective of this thesis is to apply educational techniques used in other domains to an experiment with real world measures of students in a computer science course. The findings of this paper demonstrate that the techniques used were promising in improving student performance on a programming assignment.

Contributors

Agent

Created

Date Created
2016

154800-Thumbnail Image.png

MOOCLink: linking and maintaining qulity of data provided by various MOOC providers

Description

The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data,

The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data, which is scattered all over the web, and link multiple heterogeneous sources. This leads to the challenge of maintaining the quality of Linked Data, i.e., ensuring outdated data is removed and new data is included. The focus of this thesis is devising strategies to effectively integrate data from multiple sources, publish it as Linked Data, and maintain the quality of Linked Data. The domain used in the study is online education. With so many online courses offered by Massive Open Online Courses (MOOC), it is becoming increasingly difficult for an end user to gauge which course best fits his/her needs.

Users are spoilt for choices. It would be very helpful for them to make a choice if there is a single place where they can visually compare the offerings of various MOOC providers for the course they are interested in. Previous work has been done in this area through the MOOCLink project that involved integrating data from Coursera, EdX, and Udacity and generation of linked data, i.e. Resource Description Framework (RDF) triples.

The research objective of this thesis is to determine a methodology by which the quality

of data available through the MOOCLink application is maintained, as there are lots of new courses being constantly added and old courses being removed by data providers. This thesis presents the integration of data from various MOOC providers and algorithms for incrementally updating linked data to maintain their quality and compare it against a naïve approach in order to constantly keep the users engaged with up-to-date data. A master threshold value was determined through experiments and analysis that quantifies one algorithm being better than the other in terms of time efficiency. An evaluation of the tool shows the effectiveness of the algorithms presented in this thesis.

Contributors

Agent

Created

Date Created
2016

156059-Thumbnail Image.png

Effects of Error Messages on a Student’s Ability to Understand and Fix Programming Errors

Description

Assemblers and compilers provide feedback to a programmer in the form of error messages. These error messages become input to the debugging model of the programmer. For the programmer to fix an error, they should first locate the error in

Assemblers and compilers provide feedback to a programmer in the form of error messages. These error messages become input to the debugging model of the programmer. For the programmer to fix an error, they should first locate the error in the program, understand what is causing that error, and finally resolve that error. Error messages play an important role in all three stages of fixing of errors. This thesis studies the effects of error messages in the context of teaching programming. Given an error message, this work investigates how it effects student’s way of 1) understanding the error, and 2) fixing the error. As part of the study, three error message types were developed – Default, Link and Example, to better understand the effects of error messages. The Default type provides an assembler-centric single line error message, the Link type provides a program-centric detailed error description with a hyperlink for more information, and the Example type provides a program centric detailed error description with a relevant example. All these error message types were developed for assembly language programming. A think aloud programming exercise was conducted as part of the study to capture the student programmer’s knowledge model. Different codes were developed to analyze the data collected as part of think aloud exercise. After transcribing, coding, and analyzing the data, it was found that the Link type of error message helped to fix the error in less time and with fewer steps. Among the three types, the Link type of error message also resulted in a significantly higher ratio of correct to incorrect steps taken by the programmer to fix the error.

Contributors

Agent

Created

Date Created
2017

155292-Thumbnail Image.png

Analysis and Performance Optimization of a GPGPU Implementation of Image Quality Assessment (IQA) Algorithm VSNR

Description

Image processing has changed the way we store, view and share images. One important component of sharing images over the networks is image compression. Lossy image compression techniques compromise the quality of images to reduce their size. To ensure that

Image processing has changed the way we store, view and share images. One important component of sharing images over the networks is image compression. Lossy image compression techniques compromise the quality of images to reduce their size. To ensure that the distortion of images due to image compression is not highly detectable by humans, the perceived quality of an image needs to be maintained over a certain threshold. Determining this threshold is best done using human subjects, but that is impractical in real-world scenarios. As a solution to this issue, image quality assessment (IQA) algorithms are used to automatically compute a fidelity score of an image.

However, poor performance of IQA algorithms has been observed due to complex statistical computations involved. General Purpose Graphics Processing Unit (GPGPU) programming is one of the solutions proposed to optimize the performance of these algorithms.

This thesis presents a Compute Unified Device Architecture (CUDA) based optimized implementation of full reference IQA algorithm, Visual Signal to Noise Ratio (VSNR) that uses M-level 2D Discrete Wavelet Transform (DWT) with 9/7 biorthogonal filters among other statistical computations. The presented implementation is tested upon four different image quality databases containing images with multiple distortions and sizes ranging from 512 x 512 to 1600 x 1280. The CUDA implementation of VSNR shows a speedup of over 32x for 1600 x 1280 images. It is observed that the speedup scales with the increase in size of images. The results showed that the implementation is fast enough to use VSNR on high definition videos with a frame rate of 60 fps. This work presents the optimizations made due to the use of GPU’s constant memory and reuse of allocated memory on the GPU. Also, it shows the performance improvement using profiler driven GPGPU development in CUDA. The presented implementation can be deployed in production combined with existing applications.

Contributors

Agent

Created

Date Created
2017

Smart car technologies: a comprehensive study of the state of the art with analysis and trends

Description

Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of

Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of features in a car has also increased. As a result, the user interaction inside the car has become overcrowded and more complex. This has increased the amount of distraction while driving and has also increased the number of accidents due to distracted driving. This thesis focuses on the critical analysis of today’s in-car environment covering two main aspects, Multi Modal Interaction (MMI), and Advanced Driver Assistance Systems (ADAS), to minimize the distraction. It also provides deep market research on future trends in the smart car technology. After careful analysis, it was observed that an infotainment screen cluttered with lots of small icons, a center stack with a plethora of small buttons and a poor Voice Recognition (VR) results in high cognitive load, and these are the reasons for the increased driver distraction. Though the VR has become a standard technology, the current state of technology is focused on features oriented design and a sales driven approach. Most of the automotive manufacturers are focusing on making the VR better but attaining perfection in VR is not the answer as there are inherent challenges and limitations in respect to the in-car environment and cognitive load. Accordingly, the research proposed a novel in-car interaction design solution: Multi-Modal Interaction (MMI). The MMI is a new term when used in the context of vehicles, but it is widely used in human-human interaction. The approach offers a non-intrusive alternative to the driver to interact with the features in the car. With the focus on user-centered design, the MMI and ADAS can potentially help to reduce the distraction. To support the discussion, an experiment was conducted to benchmark a minimalist UI design. An engineering based method was used to test and measure distraction of four different UIs with varying numbers of icons and screen sizes. Lastly, in order to compete with the market, the basic features that are provided by all the other competitors cannot be eliminated, but the hard work can be done to improve the HCaI and to make driving safer.

Contributors

Agent

Created

Date Created
2015

155167-Thumbnail Image.png

An analysis of the memory bottleneck and cache performance of most apparent distortion image quality assessment algorithm on GPU

Description

As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands

As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands the need for quality assessment. Subjective image quality assessment is expensive, time consuming and influenced by the subject's perception. Hence, there is a need for developing mathematical models that are capable of predicting the quality evaluation. With the advent of the information era and an exponential growth in image/video generation and consumption, the requirement for automated quality assessment has become mandatory to assess the degradation. The last few decades have seen research on automated image quality assessment (IQA) algorithms gaining prominence. However, the focus has been on achieving better predication accuracy, and not on improving computational performance. As a result, existing serial implementations require a lot of time in processing a single frame. In the last 5 years, research on general-purpose graphic processing unit (GPGPU) based image quality assessment (IQA) algorithm implementation has shown promising results for single images. Still, the implementations are not efficient enough for deployment in real world applications, especially for live videos at high resolution. Hence, in this thesis, it is proposed that microarchitecture-conscious coding on a graphics processing unit (GPU) combined with detailed understanding of the image quality assessment (IQA) algorithm can result in non-trivial speedups without compromising quality prediction accuracy. This document focusses on the microarchitectural analysis of the most apparent distortion (MAD) algorithm. The results are analyzed in-depth and one of the major bottlenecks is identified. With the knowledge of underlying microarchitecture, the implementation is restructured thereby resolving the bottleneck and improving the performance.

Contributors

Agent

Created

Date Created
2016

155003-Thumbnail Image.png

GPGPU based implementation of BLIINDS-II NR-IQA

Description

The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos

The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos during various processing operations like compression, transmission, storage etc. Objective Image Quality Assessment (IQA) algorithms have been developed that predict quality scores which match well with human subjective quality assessment. However, a lot of research still remains to be done before IQA algorithms can be deployed in real world systems. Long runtimes for one frame of image is a major hurdle. Graphics Processing Units (GPUs), equipped with massive number of computational cores, provide an opportunity to accelerate IQA algorithms by performing computations in parallel. Indeed, General Purpose Graphics Processing Units (GPGPU) techniques have been applied to a few Full Reference IQA algorithms which fall under the. We present a GPGPU implementation of Blind Image Integrity Notator using DCT Statistics (BLIINDS-II), which falls under the No Reference IQA algorithm paradigm. We have been able to achieve a speedup of over 30x over the previous CPU version of this algorithm. We test our implementation using various distorted images from the CSIQ database and present the performance trends observed. We achieve a very consistent performance of around 9 milliseconds per distorted image, which made possible the execution of over 100 images per second (100 fps).

Contributors

Agent

Created

Date Created
2016