Matching Items (3)
Filtering by

Clear all filters

141460-Thumbnail Image.png
Description

China’s South–North Water Transfer Project (SNWTP) has the potential to transfer as much as 44.8 km3 year-1 of water from the Yangtze River basin to the Yellow River basin. However, the SNWTP has not been assessed from a sustainability perspective. Thus, in this study we evaluated the SNWTP’s economic, social,

China’s South–North Water Transfer Project (SNWTP) has the potential to transfer as much as 44.8 km3 year-1 of water from the Yangtze River basin to the Yellow River basin. However, the SNWTP has not been assessed from a sustainability perspective. Thus, in this study we evaluated the SNWTP’s economic, social, and environmental impacts by reviewing the English literature published in journals that are part of the Web of Science database. We then synthesized this literature using a Triple Bottom Line framework of sustainability assessment. Our study has led to three main findings: (1) whether the SNWTP is economically beneficial depends largely on model assumptions, meaning that economic gains at the regional and national level are uncertain; (2) the SNWTP requires the resettlement of hundreds of thousands of people and challenges existing water management institutions, suggesting possible social concerns beyond the short term; and (3) evidently large environmental costs in water-providing areas and uncertain environmental benefits in water-receiving areas together point to an uncertain environmental future for the geographic regions involved. Thus, the overall sustainability of SNWTP is seriously questionable. Although much work has been done studying individual aspects of SNWTP’s sustainability, few studies have utilized the multi-scale, transdisciplinary approaches that such a project demands. To minimize environmental risks, ensure social equity, and sustain economic benefits, we suggest that the project be continuously monitored in all three dimensions, and that integrated sustainability assessments and policy improvements be carried out periodically.

ContributorsWilson, Maxwell (Author) / Li, Xiao-Yan (Author) / Ma, Yu-Jun (Author) / Smith, Andrew (Author) / Wu, Jianguo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-22
141483-Thumbnail Image.png
Description

Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau

Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production.

ContributorsHarris, Richard B. (Author) / Wenying, Wang (Author) / Smith, Andrew (Author) / Bedunah, Donald J. (Author) / Badinqiuying (Author)
Created2015-07-24
Description

With approximately 20 % of the world’s population living in its downstream watersheds, the Qinghai-Tibetan Plateau (QTP) is considered “Asia’s Water Tower.” However, grasslands of the QTP, where most of Asia’s great rivers originate, are becoming increasingly degraded, which leads to elevated population densities of a native small mammal, the

With approximately 20 % of the world’s population living in its downstream watersheds, the Qinghai-Tibetan Plateau (QTP) is considered “Asia’s Water Tower.” However, grasslands of the QTP, where most of Asia’s great rivers originate, are becoming increasingly degraded, which leads to elevated population densities of a native small mammal, the plateau pika (Ochotona curzoniae). As a result pikas have been characterized as a pest leading to wide-spread poisoning campaigns in an attempt to restore grassland quality. A contrary view is that pikas are a keystone species for biodiversity and that their burrowing activity provides a critical ecosystem service by increasing the infiltration rate of water, hence reducing overland flow. We demonstrate that poisoning plateau pikas significantly reduces infiltration rate of water across the QTP creating the potential for watershed-level impacts. Our results demonstrate the importance of burrowing mammals as ecosystem engineers, particularly with regard to their influence on hydrological functioning.

ContributorsWilson, Maxwell (Author) / Smith, Andrew (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01