Matching Items (37)

Filtering by

Clear all filters

128946-Thumbnail Image.png

When (Distant) Relatives Stay Too Long: Implications for Cancer Medicine

Description

Whole-genome analyses of human medulloblastomas show that the dominant clone at relapse is present as a rare subclone at primary diagnosis.

Contributors

Created

Date Created
2016-02-24

128259-Thumbnail Image.png

Homo-Psychologicus: Reactionary Behavioural Aspects of Epidemics

Description

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of epidemics. We focus on reactionary behavioural changes, which apply to both social distancing and voluntary vaccination participations. Our analyses reveal complex relationships between spontaneous and uncoordinated behavioural changes, the emergence of its contagion properties, and mitigation of infectious diseases. We find that the presence of effective behavioural changes can impede the persistence of disease. Furthermore, it was found that under perfect effective behavioural change, there are three regions in the response factor (e.g., imitation and/or reactionary) and behavioural scale factor (e.g., global/local) factors ρ–α behavioural space. Mainly, (1) disease is always endemic even in the presence of behavioural change, (2) behavioural-prevalence plasticity is observed and disease can sometimes be eradication, and (3) elimination of endemic disease under permanence of permanent behavioural change is achieved. These results suggest that preventive behavioural changes (e.g., non-pharmaceutical prophylactic measures, social distancing and exclusion, crowd avoidance) are influenced by individual differences in perception of risks and are a salient feature of epidemics. Additionally, these findings indicates that care needs to be taken when considering the effect of adaptive behavioural change in predicting the course of epidemics, and as well as the interpretation and development of the public health measures that account for spontaneous behavioural changes.

Contributors

Created

Date Created
2015-10-14

128263-Thumbnail Image.png

A Graphical Approach to a Model of a Neuronal Tree With a Variable Diameter

Description

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each

Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.

Contributors

Created

Date Created
2014-07-09

129001-Thumbnail Image.png

Mitigating Effects of Vaccination on Influenza Outbreaks Given Constraints in Stockpile Size and Daily Administration Capacity

Description

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination proportional to the population at each point in time.

Methods: We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the non-proportional model of vaccination and compare it to the proportional scheme typically found in the literature.

Results: The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.

Conclusions: The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.

Contributors

Created

Date Created
2011-08-01

129017-Thumbnail Image.png

The Influence of Geographic and Climate Factors on the Timing of Dengue Epidemics in Perú, 1994-2008

Description

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based on the weekly number of dengue cases in Perú by province, we investigated the association between dengue incidence during the period 1994-2008 and demographic and climate factors across geographic regions of the country.

Results: Our findings support the presence of significant differences in the timing of dengue epidemics between jungle and coastal regions, with differences significantly associated with the timing of the seasonal cycle of mean temperature.

Conclusions: Dengue is highly persistent in jungle areas of Perú where epidemics peak most frequently around March when rainfall is abundant. Differences in the timing of dengue epidemics in jungle and coastal regions are significantly associated with the seasonal temperature cycle. Our results suggest that dengue is frequently imported into coastal regions through infective sparks from endemic jungle areas and/or cities of other neighboring endemic countries, where propitious environmental conditions promote year-round mosquito breeding sites. If jungle endemic areas are responsible for multiple dengue introductions into coastal areas, our findings suggest that curtailing the transmission of dengue in these most persistent areas could lead to significant reductions in dengue incidence in coastal areas where dengue incidence typically reaches low levels during the dry season.

Contributors

Created

Date Created
2011-06-08

129018-Thumbnail Image.png

The Influence of Climatic Conditions on the Transmission Dynamics of the 2009 A/H1N1 Influenza Pandemic in Chile

Description

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S.

Methods: We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.

Results: While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period.

Conclusions: There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.

Contributors

Created

Date Created
2012-11-13

129026-Thumbnail Image.png

Impact of Antiviral Treatment and Hospital Admission Delay on Risk of Death Associated With 2009 A/H1N1 Pandemic Influenza in Mexico

Description

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe outcomes of 2009 A/H1N1 influenza infections in different populations (e.g., [1-5]), analyses of the determinants of mortality risk spanning multiple pandemic waves and geographic regions are scarce. Between-country differences in the mortality burden of the 2009 pandemic could be linked to differences in influenza case management, underlying population health, or intrinsic differences in disease transmission [6]. Additional studies elucidating the determinants of disease severity globally are warranted to guide prevention efforts in future influenza pandemics.

In Mexico, the 2009 A/H1N1 influenza pandemic was characterized by a three-wave pattern occurring in the spring, summer, and fall of 2009 with substantial geographical heterogeneity [7]. A recent study suggests that Mexico experienced high excess mortality burden during the 2009 A/H1N1 influenza pandemic relative to other countries [6]. However, an assessment of potential factors that contributed to the relatively high pandemic death toll in Mexico are lacking. Here, we fill this gap by analyzing a large series of laboratory-confirmed A/H1N1 influenza cases, hospitalizations, and deaths monitored by the Mexican Social Security medical system during April 1 through December 31, 2009 in Mexico. In particular, we quantify the association between disease severity, hospital admission delays, and neuraminidase inhibitor use by demographic characteristics, pandemic wave, and geographic regions of Mexico.

Methods: We analyzed a large series of laboratory-confirmed pandemic A/H1N1 influenza cases from a prospective surveillance system maintained by the Mexican Social Security system, April-December 2009. We considered a spectrum of disease severity encompassing outpatient visits, hospitalizations, and deaths, and recorded demographic and geographic information on individual patients. We assessed the impact of neuraminidase inhibitor treatment and hospital admission delay (≤ > 2 days after disease onset) on the risk of death by multivariate logistic regression.

Results: Approximately 50% of all A/H1N1-positive patients received antiviral medication during the Spring and Summer 2009 pandemic waves in Mexico while only 9% of A/H1N1 cases received antiviral medications during the fall wave (P < 0.0001). After adjustment for age, gender, and geography, antiviral treatment significantly reduced the risk of death (OR = 0.52 (95% CI: 0.30, 0.90)) while longer hospital admission delays increased the risk of death by 2.8-fold (95% CI: 2.25, 3.41).

Conclusions: Our findings underscore the potential impact of decreasing admission delays and increasing antiviral use to mitigate the mortality burden of future influenza pandemics.

Contributors

Created

Date Created
2012-04-20

129244-Thumbnail Image.png

Identifying Robustness in the Regulation of Collective Foraging of Ant Colonies Using an Interaction-Based Model With Backward Bifurcation

Description

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model׳s compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

Contributors

Created

Date Created
2015-02-21

128321-Thumbnail Image.png

Apis Mellifera Octopamine Receptor 1 (AmOA1) Expression in Antennal Lobe Networks of the Honey Bee (Apis Mellifera) and Fruit Fly (Drosophila Melanogaster)

Description

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

Contributors

Created

Date Created
2013-10-25

128055-Thumbnail Image.png

A Data-Driven Mathematical Model of CA-MRSA Transmission Among Age Groups: Evaluating the Effect of Control Interventions

Description

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain (MCMC) techniques to parameterize our model using monthly time series data on SSTIs incidence in children (≤19 years) during January 2004 -December 2006 in Maricopa County, Arizona. Our model-based forecast for the period January 2007–December 2008 also provided a good fit to data. We also carried out an uncertainty and sensitivity analysis on the control reproduction number, Rc which we estimated at 1.3 (95% CI [1.2,1.4]) based on the model fit to data. Using our calibrated model, we evaluated the effect of typical intervention strategies namely reducing the contact rate of infected individuals owing to awareness of infection and decolonization strategies targeting symptomatic infected individuals on both and the long-term disease dynamics. We also evaluated the impact of hypothetical decolonization strategies targeting asymptomatic colonized individuals. We found that strategies focused on infected individuals were not capable of achieving disease control when implemented alone or in combination. In contrast, our results suggest that decolonization strategies targeting the pediatric population colonized with CA-MRSA have the potential of achieving disease elimination.

Contributors

Created

Date Created
2013-11-21