Matching Items (2)

133266-Thumbnail Image.png

Environmental Impact of Graphene's Adoption into Everyday Life

Description

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength, flexibility, and lightweight will be instrumental in producing the next generation of athletic wear and sports equipment. Graphene's use in energy comes from its theorized ability to charge a phone battery in seconds or an electric car in minutes. Finally, for electronics, graphene will be used to create faster transistors, flexible electronics, and fully integrated wearable technology.

Contributors

Agent

Created

Date Created
  • 2018-05

130340-Thumbnail Image.png

Ovarian Control of Nectar Collection in the Honey Bee (Apis mellifera)

Description

Honey bees are a model system for the study of division of labor. Worker bees demonstrate a foraging division of labor (DOL) by biasing collection towards carbohydrates (nectar) or protein

Honey bees are a model system for the study of division of labor. Worker bees demonstrate a foraging division of labor (DOL) by biasing collection towards carbohydrates (nectar) or protein (pollen). The Reproductive ground-plan hypothesis of Amdam et al. proposes that foraging DOL is regulated by the networks that controlled foraging behavior during the reproductive life cycle of honey bee ancestors. Here we test a proposed mechanism through which the ovary of the facultatively sterile worker impacts foraging bias. The proposed mechanism suggests that the ovary has a regulatory effect on sucrose sensitivity, and sucrose sensitivity impacts nectar loading. We tested this mechanism by measuring worker ovary size (ovariole number), sucrose sensitivity, and sucrose solution load size collected from a rate-controlled artificial feeder. We found a significant interaction between ovariole number and sucrose sensitivity on sucrose solution load size when using low concentration nectar. This supports our proposed mechanism. As nectar and pollen loading are not independent, a mechanism impacting nectar load size would also impact pollen load size.

Contributors

Agent

Created

Date Created
  • 2012-04-30