Matching Items (16)
151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
150321-Thumbnail Image.png
Description
Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive

Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand and advance the numerical methodology utilized for the computations. The second is to shed some light on the details of how surface dimples distort boundary layers and cause transition to turbulence. Simulations are performed of the flow over a simplified configuration: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an immersed boundary as a representation of the dimpled surface along with direct numerical simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples are arranged in staggered rows separated by spacing of the center of the bottom of the dimples by one diameter in both the spanwise and streamwise dimensions. The simulations are conducted for both two and three staggered rows of dimples. Flow variables are normalized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based on freestream velocity and inlet boundary layer thickness). First and second order statistics show the turbulent boundary layers correlate well to channel flow and flow of a zero pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but deviates further away from the wall. The forcing of transition to turbulence by the dimples is unlike the transition caused by a naturally transitioning flow, a small perturbation such as trip tape in experimental flows, or noise in the inlet condition for computational flows.
ContributorsGutierrez-Jensen, Jeremiah J (Author) / Squires, Kyle (Thesis advisor) / Hermann, Marcus (Committee member) / Gelb, Anne (Committee member) / Arizona State University (Publisher)
Created2011
150410-Thumbnail Image.png
Description
A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural

A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an affordable dedicated small-satellite launch vehicle relies upon a combination of expendable medium-range military surplus solid rocket motor assets. The dissertation discusses in detail the current operational capabilities of these military boosters and provides an outline for necessary refurbishments required to successfully place a small payload in orbit. A custom 3DOF trajectory script is used to evaluate the performance of these designs. Concurrently, a parametric cost-mass-performance response surface methodology is employed as an optimization tool to minimize life cycle costs of the proposed vehicles. This optimization scheme is centered on reducing life cycle costs per payload mass delivered rather than raw performance increases. Lastly, a novel upper-stage engine configuration using Hydroxlammonium Nitrate (HAN) is introduced and experimentally static test fired to illustrate the inherent simplicity and high performance of this high density, nontoxic propellant. The motor was operated in both pulse and small duration tests using a newly developed proprietary mixture that is hypergolic with HAN upon contact. This new propellant is demonstrated as a favorable replacement for current space vehicles relying on the heritage use of hydrazine. The end result is a preliminary design of a vehicle built from demilitarized booster assets that complements, rather than replaces, traditional space launch vehicles. This dissertation proves that such capabilities exist and more importantly that the resulting architecture can serve as a viable platform for immediate and affordable access to low Earth orbit.
ContributorsVillarreal, James Kendall (Author) / Squires, Kyle (Thesis advisor) / Lee, Taewoo (Committee member) / Shankar, Praveen (Committee member) / Sharp, Thomas (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
150005-Thumbnail Image.png
Description
The Magnetoplasmadynamic (MPD) thruster is an electromagnetic thruster that produces a higher specific impulse than conventional chemical rockets and greater thrust densities than electrostatic thrusters, but the well-known operational limit---referred to as ``onset"---imposes a severe limitation efficiency and lifetime. This phenomenon is associated with large fluctuations in operating voltage, high

The Magnetoplasmadynamic (MPD) thruster is an electromagnetic thruster that produces a higher specific impulse than conventional chemical rockets and greater thrust densities than electrostatic thrusters, but the well-known operational limit---referred to as ``onset"---imposes a severe limitation efficiency and lifetime. This phenomenon is associated with large fluctuations in operating voltage, high rates of electrode erosion, and three-dimensional instabilities in the plasma flow-field which cannot be adequately represented by two-dimensional, axisymmetric models. Simulations of the Princeton Benchmark Thruster (PBT) were conducted using the three-dimensional version of the magnetohydrodynamic (MHD) code, MACH. Validation of the numerical model is partially achieved by comparison to equivalent simulations conducted using the well-established two-dimensional, axisymmetric version of MACH. Comparisons with available experimental data was subsequently performed to further validate the model and gain insights into the physical processes of MPD acceleration. Thrust, plasma voltage, and plasma flow-field predictions were calculated for the PBT operating with applied currents in the range $6.5kA < J < 23.25kA$ and mass-flow rates of $1g/s$, $3g/s$, and $6g/s$. Comparisons of performance characteristics between the two versions of the code show excellent agreement, indicating that MACH3 can be expected to be as predictive as MACH2 has demonstrated over multiple applications to MPD thrusters. Predicted thrust for operating conditions within the range which exhibited no symptoms of the onset phenomenon experimentally also showed agreement between MACH3 and experiment well within the experimental uncertainty. At operating conditions beyond such values , however, there is a discrepancy---up to $\sim20\%$---which implies that certain significant physical processes associated with onset are not currently being modeled. Such processes are also evident in the experimental total voltage data, as is evident by the characteristic ``voltage hash", but not present in predicted plasma voltage. Additionally, analysis of the predicted plasma flow-field shows no breakdown in azimuthal symmetry, which is expected to be associated with onset. This implies that perhaps certain physical processes are modeled by neither MACH2 nor MACH3; the latter indicating that such phenomenon may not be inherently three dimensional and related to the plasma---as suggested by other efforts---but rather a consequence of electrode material processes which have not been incorporated into the current models.
ContributorsParma, Brian (Author) / Mikellides, Pavlos G (Thesis advisor) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
136658-Thumbnail Image.png
Description
The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases

The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases of a double-bladed and single-bladed rotor have been run to investigate the causes and types of wake instabilities, as well as compare them to the short wave, long wave, and mutual inductance modes proposed by Widnall[2]. Evaluation of results revealed several perturbations appearing in both single and double-bladed wakes, the origin of which was unknown and difficult to trace. This made the computations not directly comparable to theoretical results, and drawing into question the physical flight conditions being modeled. Nonetheless, they displayed a wake structure highly sensitive to both computational and physical disturbances; thus extreme care must be taken in constructing grids and applying boundary conditions when doing wake computations to ensure results relevant to the complex and dynamic flight conditions of physical aircraft are generated.
ContributorsDrake, Nicholas Spencer (Author) / Wells, Valana (Thesis director) / Squires, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136446-Thumbnail Image.png
Description
Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull.

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull. A concussion causes temporary loss of brain function leading to cognitive, physical, and emotional symptoms, such as confusion, vomiting,headache, nausea,depression, disturbed sleep, moodiness, and amnesia. Although the short-term effects of concussions are limited, the long-term effects of concussions, if untreated, can be devastating and even life-threatening. Concussions are having detrimental ramifications on society and it is important to know what these ramifications are. Concussions are a common occurrence in traditional physical sports such as soccer, basketball, and football. However, due to the violent nature of football (American football), concussions are more prevalent and the effects are more severe. Changes to rules and equipment, specifically helmets, have been made to reduce head impacts in football but there is not currently enough evidence to conclude that they significantly lessen the frequency and severity of concussions.
ContributorsLaughlin, Riley James (Author) / Squires, Kyle (Thesis director) / Shrake, Scott (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
137091-Thumbnail Image.png
Description
Access to clean water is an issue that abounds in many areas across the world. It is estimated that over 770 million people lack access to improved sources of water. However, the lack of access to clean water does not just affect people's health; it is a problem that affects

Access to clean water is an issue that abounds in many areas across the world. It is estimated that over 770 million people lack access to improved sources of water. However, the lack of access to clean water does not just affect people's health; it is a problem that affects three major areas. Because people do not have clean drinking water, millions of school days are missed per year due to water-related disease or children being forced to procure clean water. Also, gender inequalities result from women bearing the majority of the responsibility of walking long distances to find a source of potable water. Therefore, lack of access to clean water affects people's health, their education, and gender equality. The problem is not that there is a lack of technologies to provide clean water; the problem is that these technologies are not being implemented sustainably in the areas that need them most. To bring better access of clean water to people in developing nations, 33 Buckets has designed a distribution platform that uses schools as the central point for water distribution to local communities. A sustainable filtration system will be installed at the school to provide clean water for the people at the school. People in the nearby community will also be able to get free water if they bring their own containers to the school. To maintain the filter and provide it with any repairs that are necessary, water will be sold to nearby businesses lower than the current market prices. These profits will be used to ensure the quality of the filtration system and also to provide educational improvements to the school. An advisory committee made up of men and women will be assembled to run the filtration business and handle the finances. A pilot project to implement this model has been identified as the Rahima Hoque Girls School in rural Bangladesh. The team will travel to Bangladesh in Summer 2014 to install a filter at the school, purchase water testing supplies and containers, and meet with the advisory committee to go over final logistical details. Financial projections show that if the filter operates at 50% of its expected frequency and water is sold 5 days a week for 52 weeks, the school will generate $33,532.31. These profits are more than enough to maintain the system and pay for educational improvements to the school. Once implementation of the site is completed, the project will be monitored to track how the water selling business is operating. If the model is shown to be successful, it can then be scaled to other nearby schools or other countries with water contamination problems.
ContributorsWiegand, Connor James (Author) / Henderson, Mark (Thesis director) / Shrake, Scott (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153865-Thumbnail Image.png
Description
This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann,

This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann, 2008) for effective use of processing power. Computation is executed in parallel utilizing both CPU and GPU architectures to make the method feasible at high order. Finally, a sparse data structure is implemented to take full advantage of parallelism on the GPU, where performance relies on well-managed memory operations.

With solution variables projected into a kth order polynomial basis, a k+1 order convergence rate is found for both advection and reinitialization tests using the method of manufactured solutions. Other standard test cases, such as Zalesak's disk and deformation of columns and spheres in periodic vortices are also performed, showing several orders of magnitude improvement over traditional WENO level set methods. These tests also show the impact of reinitialization, which often increases shape and volume errors as a result of level set scalar trapping by normal vectors calculated from the local level set field.

Accelerating advection via GPU hardware is found to provide a 30x speedup factor comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with speedup factors increasing with polynomial degree until shared memory is filled. A similar algorithm is implemented for reinitialization, which relies on heavier use of shared and global memory and as a result fills them more quickly and produces smaller speedups of 18x.
ContributorsJibben, Zechariah J (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2015
155305-Thumbnail Image.png
Description
The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in a 6.3 aspect-ratio cylinder at a Rayleigh number of 9.6 × 107 and Prandtl number of 6.7. Single and double point statistics are compared against experiments and several resolution criteria are examined to verify that the simulation has enough spatial and temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side walls, with rays of vorticity pointing toward the core of the cell. Two different large- scale organizations are observed and these patterns are well described spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier modes are shown to be dominant throughout the entire domain, and are found to be the primary source for radial inhomogeneity by inspection of the energy spectra. The precision with which the azimuthal Fourier modes describe these large-scale structures shows that these structures influence a large range of length scales. Conversely, the smaller scale structures are found to be more sensitive to radial position within the Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the global pattern followed by a net rotation about the central axis. The transition takes place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests a similarity in dynamic events across different aspect-ratios.
ContributorsSakievich, Philip Sakievich (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2017