Matching Items (11)

147959-Thumbnail Image.png

Modeling a M class solar flare/CME with the Earth's atmosphere and extrapolating to an X class solar flare

Description

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal mass ejection. This thesis will show the interaction of photons and protons of various energies with several kilometers of atmosphere.

Contributors

Agent

Created

Date Created
  • 2021-05

129523-Thumbnail Image.png

Chiral asymmetry in cold QED plasma in a strong magnetic field

Description

The interaction induced chiral asymmetry is calculated in cold QED plasma beyond the weak-field approximation. By making use of the recently developed Landau-level representation for the fermion self-energy, the chiral

The interaction induced chiral asymmetry is calculated in cold QED plasma beyond the weak-field approximation. By making use of the recently developed Landau-level representation for the fermion self-energy, the chiral shift and the parity-even chiral chemical potential function are obtained with the help of numerical methods. The results are used to quantify the chiral asymmetry of the Fermi surface in dense QED matter. Because of the weakness of the QED interactions, the value of the asymmetry appears to be rather small even in the strongest magnetic fields and at the highest stellar densities. However, the analogous asymmetry can be substantial in the case of dense quark matter.

Contributors

Agent

Created

Date Created
  • 2014-10-10

129611-Thumbnail Image.png

Radiative corrections to chiral separation effect in QED

Description

We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense QED in a magnetic field. Contrary to the conventional wisdom suggesting that the

We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense QED in a magnetic field. Contrary to the conventional wisdom suggesting that the axial current should be exactly fixed by the chiral anomaly relation and is described by the topological contribution on the lowest Landau level in the free theory, we find in fact that the axial current receives nontrivial radiative corrections. The direct calculations performed to the linear order in the external magnetic field show that the nontrivial radiative corrections to the axial current are provided by the Fermi surface singularity in the fermion propagator at nonzero fermion density.

Contributors

Agent

Created

Date Created
  • 2013

129612-Thumbnail Image.png

Chiral asymmetry in QED matter in a magnetic field

Description

We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative order in the coupling constant and to the linear order in an external magnetic field. We

We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative order in the coupling constant and to the linear order in an external magnetic field. We find that the chiral asymmetry of the normal ground state of the system is characterized by two new Dirac structures. One of them is the familiar chiral shift previously discussed in the Nambu-Jona-Lasinio model. The other structure is new. It formally looks like that of the chiral chemical potential but is an odd function of the longitudinal component of the momentum, directed along the magnetic field. The origin of this new parity-even chiral structure is directly connected with the long-range character of the QED interaction. The form of the Fermi surface in the weak magnetic field is determined.

Contributors

Agent

Created

Date Created
  • 2013

154468-Thumbnail Image.png

Relativistic fermions in a magnetic field: from Quantum Hall effect in graphene to chiral asymmetry in QED

Description

In the first part of this thesis, we use the generalized Landau-level represen-

tation to study the effect of screening on the properties of the graphene quantum Hall states with integer

In the first part of this thesis, we use the generalized Landau-level represen-

tation to study the effect of screening on the properties of the graphene quantum Hall states with integer filling factors. The analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range Coulomb in- teraction is modified by the one-loop static screening effects. The solutions demon- strate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken U (4) flavor symmetry. The results of the temperature dependence of the energy gaps mimic well the temperature dependence of the activation energies measured in experiment. The Landau-level running of the quasiparticle dynamical parameters could be tested via optical studies of the integer quantum Hall states.

In the second part, by using the generalized Landau-level representation, we study the interaction induced chiral asymmetry in cold QED plasma beyond the weak-field approximation. The chiral shift and the parity-even chiral chemical potential function are obtained numerically and are found peaking near the Fermi surface and increases and decreases with the Landau level index, respectively. The results are used to quantify the chiral asymmetry of the Fermi surface in dense QED matter. The chiral asymmetry appears to be rather small even in the strongest mag- netic fields and at the highest stellar densities. However, the analogous asymmetry can be substantial in the case of dense quark matter.

Contributors

Agent

Created

Date Created
  • 2016

157133-Thumbnail Image.png

Anomalous Chiral Plasmas in the Hydrodynamic Regime

Description

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.

Contributors

Agent

Created

Date Created
  • 2019

151558-Thumbnail Image.png

Quantum Monte Carlo calculations of light nuclei with non-local potentials

Description

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.

Contributors

Agent

Created

Date Created
  • 2013

155056-Thumbnail Image.png

Optical properties of hybrid nanomaterials

Description

The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling

The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling between a sinusoidal grating and two-level quantum emitters. A system consisting of metallic v-grooves and two-level emitters is thoroughly explored in the linear regime, where the spatially uniform fields provide a unique means of characterizing the coupling between the v-grooves and emitters. Furthermore, subwavelength spatial effects in the ground state population of emitters in the v-grooves are observed and analyzed in the non-linear regime. Finally, photon echoes are explored in the case of a one-dimensional ensemble of interacting two-level emitters as well as two-level emitters coupled to metallic slits, demonstrating the influence of collective effects on the echo amplitude in the former and the modifcation of the photon echo due to interaction with surface plasmons on the slits in the latter.

Contributors

Agent

Created

Date Created
  • 2016

152019-Thumbnail Image.png

Relativistic matter under extreme conditions

Description

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.

Contributors

Agent

Created

Date Created
  • 2013

152355-Thumbnail Image.png

Astrophysical neutrinos at the low and high energy frontiers

Description

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum.

Contributors

Agent

Created

Date Created
  • 2013