Matching Items (17)

158626-Thumbnail Image.png

Modelling Geochemical and Geobiological Consequences of Low-Temperature Continental Serpentinization

Description

The hydrous alteration of ultramafic rocks, known as serpentinization, produces some of the most reduced (H2 >1 mmolal) and alkaline (pH >11) fluids on Earth. Serpentinization can proceed even at

The hydrous alteration of ultramafic rocks, known as serpentinization, produces some of the most reduced (H2 >1 mmolal) and alkaline (pH >11) fluids on Earth. Serpentinization can proceed even at the low-temperature conditions (<50°C) characteristic of most of Earth’s continental aquifers, raising questions on the limits of life deep in the subsurface and the magnitude in the flux of reduced volatiles to the surface. In this work, I explored the compositions and consequences of fluids and volatiles found in three low-temperature serpentinizing environments: (1) active hyperalkaline springs in ophiolites, (2) modern shallow and deep peridotite aquifers, and (3) komatiitic aquifers during the Archean.

Around 140 fluids were sampled from the Oman ophiolite and analyzed for their compositions. Fluid compositions can be accounted for by thermodynamic simulations of reactions accompanying incipient to advanced stages of serpentinization, as well as by simulations of mass transport processes such as fluid mixing and mineral leaching. Thermodynamic calculations were also used to predict compositions of end-member fluids representative of the shallow and deep peridotite aquifers that were ultimately used to quantify energy available to various subsurface chemolithotrophs. Calculations showed that sufficient energy and power supply can be available to support deep-seated methanogens. An additional and a more diverse energy supply can be available when surfacing deep-seated fluids mix with shallow groundwater in discharge zones of the subsurface fluid pathway. Finally, the consequence of the evolving continental composition during the Archean for the global supply of H2 generated through komatiite serpentinization was quantified. Results show that the flux of serpentinization-generated H2 could have been a significant sink for O2 during most of the Archean. This O2 sink diminished greatly towards the end of the Archean as komatiites became less common and helped set the stage for the Great Oxidation Event. Overall, this study provides a framework for exploring the origins of fluid and volatile compositions, including their redox state, that can result from various low-temperature serpentinizing environments in the present and past Earth and in other rocky bodies in the solar system.

Contributors

Agent

Created

Date Created
  • 2020

153010-Thumbnail Image.png

Mechanistic studies of hydrothermal organic geochemistry

Description

The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic

The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic cycles in the deep subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life. In most previous studies of hydrothermal organic reactions the emphasis has been mainly on determining reaction product distributions, studies that provide detailed mechanistic information or direct evidence for specific reaction intermediates are rare. To develop a better understanding, I performed hydrothermal experiments with model ketone compound dibenzylketone (DBK), which serves as a quite useful tool to probe the bond breaking and forming processes in hydrothermal geochemical transformations. A careful study of reaction kinetics and products of DBK in Chapter 2 of this dissertation reveals reversible and irreversible reaction pathways, and provides evidence for competing ionic and radical reaction mechanisms. The majority of the observed products result from homolytic carbon-carbon and carbon-hydrogen bond cleavage and secondary coupling reactions of the benzyl and related radical intermediates.

In the third chapter of the dissertation, a novel hydrothermal photochemical method is studied, which enabled in situ independent generation of the relevant radicals and effectively separated the radical and ionic reactions that occur simultaneously in pure thermal reactions. In the following chapter, I focus on the role of minerals on ketone hydrothermal reactions. Minerals such as quartz and corundum have no detectable effect on DBK, whereas magnetite, hematite, and troilite all increase ketone reactivity to various extents. The influence of these iron-bearing minerals can be attributed to the mineral surface catalysis or the solution chemistry change that is presumably caused by dissolved inorganic species from minerals. In addition, some new discoveries on strong oxidizing effect of copper (II) ion under hydrothermal conditions are described in the latter chapter of the dissertation, where examples of clean and rapid reactions that converted alcohols to aldehyde and aldehydes to carboxylic acids are included.

Contributors

Agent

Created

Date Created
  • 2014

155528-Thumbnail Image.png

Kinetics, thermodynamics, and habitability of microbial iron redox cycling

Description

Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR)

Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric minerals and organic carbon. Microbial iron oxidation (MIO) was detected from pH 2 – 5.5. In systems with abundant Fe (II), dissolved oxygen controls the presence of MIO. Rates generally increase with increased Fe(II) concentrations, but rate constants are not significantly altered by additions of Fe(II). MIRC was detected in systems with abundant ferric mineral deposition.

The rates of microbial and abiological iron oxidation were determined in a variety of cold (T= 9-12°C), circumneutral (pH = 5.5-9) environments in the Swiss Alps. Rates of MIO were measured in systems up to a pH of 7.4; only abiotic processes were detected at higher pH values. Iron oxidizing bacteria (FeOB) were responsible for 39-89% of the net oxidation rate at locations where biological iron oxidation was detected. Members of putative iron oxidizing genera, especially Gallionella, are abundant in systems where MIO was measured. Speciation calculations reveal that ferrous iron typically exists as FeCO30, FeHCO3+, FeSO40 or Fe2+ in these systems. The presence of ferrous (bi)carbonate species appear to increase abiotic iron oxidation rates relative to locations without significant concentrations. This approach, integrating geochemistry, rates, and community composition, reveals biogeochemical conditions that permit MIO, and locations where the abiotic rate is too fast for the biotic process to compete.

For a reaction to provide habitability for microbes in a given environment, it must energy yield and this energy must dissipate slowly enough to remain bioavailable. Thermodynamic boundaries exist at conditions where reactions do not yield energy, and can be quantified by calculations of chemical energy. Likewise, kinetic boundaries exist at conditions where the abiotic reaction rate is so fast that reactants are not bioavailable; this boundary can be quantified by measurements biological and abiological rates. The first habitability maps were drawn, using iron oxidation as an example, by quantifying these boundaries in geochemical space.

Contributors

Agent

Created

Date Created
  • 2017

156308-Thumbnail Image.png

Hydrothermal organic reduction and deoxygenation

Description

Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction

Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving mineral surface catalysis, are largely unknown. The overall goal of this work is to describe these mechanisms so that predictive models of reactivity can be developed and so that applications of these reactions beyond geochemistry can be explored. The focus of this dissertation is the mechanisms of hydrothermal dehydration and catalytic hydrogenation reactions. Kinetic and structure/activity relationships show that elimination occurs mainly by the E1 mechanism for simple alcohols via homogeneous catalysis. Stereochemical probes show that hydrogenation on nickel occurs on the metal surface. By combining dehydration with and catalytic reduction, effective deoxygenation of organic structures with various functional groups such as alkenes, polyols, ketones, and carboxylic acids can be accomplished under hydrothermal conditions, using either nickel or copper-zinc alloy. These geomimetic reactions can potentially be used in biomass reduction to generate useful fuels and other high value chemicals. Through the use of earth-abundant metal catalysts, and water as the solvent, the reactions presented in this dissertation are a green alternative to current biomass deoxygenation/reduction methods, which often use exotic, rare-metal catalysts, and organic solvents.

Contributors

Agent

Created

Date Created
  • 2018

158671-Thumbnail Image.png

Thermodynamic Cartography in Basalt-Hosted Hydrothermal Systems

Description

Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the

Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the result of innumerable geophysical and geochemical processes in the mantel and crust—generate spatial variation in the equilibrium states toward which these water-rock environments cascade. This alteration results in a unique distribution of precipitate assemblages, hydrothermal fluid chemistries, and energetic landscapes among ecosystems rooted within and above the seafloor. The equilibrium states for the full range of basalt compositional heterogeneity present today are calculated over all appropriate temperatures and extents of reaction with seawater, along with the non-equilibrium mixtures generated when hydrothermal fluids mix back into seawater. These mixes support ancient and diverse ecosystems fed not by the energy of the sun, but by the geochemical energy of the Earth. Facilitated by novel, high throughout code, this effort has yielded a high-resolution compositional database that is mapped back onto all ridge systems. By resolving the chemical and energetic consequences of basalt-seawater interaction to sub-ridge scales, alteration features that are globally homogeneous can be distinguished from those that are locally unique, guiding future field observations with testable geochemical and biochemical predictions.

Contributors

Agent

Created

Date Created
  • 2020

150140-Thumbnail Image.png

Meteorites on Mars as planetary research tools with special considerations for Martian weathering processes

Description

The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars,

The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights into possible variabilities in meteoroid type sampling between Mars and Earth space environments; 3) aid in our understanding of soil, dust, and sedimentary rock chemistry; 4) assist with the calibration of crater-age dating techniques; and 5) provide witness samples for chemical and mechanical weathering processes. The presence of reduced metallic iron in approximately 88 percent of meteorite falls renders the majority of meteorites particularly sensitive to oxidation by H2O interaction. This makes them excellent markers for H2O occurrence. Several large meteorites have been discovered at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers (MERs). Significant morphologic characteristics interpretable as weathering features in the Meridiani suite of iron meteorites include a 1) large pit lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; 2) differentially eroded kamacite and taenite lamellae on three of the meteorites, providing relative timing through cross-cutting relationships with deposition of 3) an iron oxide-rich dark coating; and 4) regmaglypted surfaces testifying to regions of minimal surface modification; with other regions in the same meteorites exhibiting 5) large-scale, cavernous weathering. Iron meteorites found by Mini-TES at both Meridiani Planum and Gusev Crater have prompted laboratory experiments designed to explore elements of reflectivity, dust cover, and potential oxide coatings on their surfaces in the thermal infrared using analog samples. Results show that dust thickness on an iron substrate need be only one tenth as great as that on a silicate rock to obscure its infrared signal. In addition, a database of thermal emission spectra for 46 meteorites was prepared to aid in the on-going detection and interpretation of these valuable rocks on Mars using Mini-TES instruments on both MER spacecraft. Applications to the asteroidal sciences are also relevant and intended for this database.

Contributors

Agent

Created

Date Created
  • 2011

154046-Thumbnail Image.png

Hydrothermal habitats: measurements of bulk microbial elemental composition, and models of hydrothermal influences on the evolution of dwarf planets

Description

Finding habitable worlds is a key driver of solar system exploration. Many solar

system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life.

Such environments

Finding habitable worlds is a key driver of solar system exploration. Many solar

system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life.

Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth.

Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets. Interaction products can be observed if transported to the surface. I simulate numerically how cryovolcanic transport is enabled by primordial and hydrothermal volatile exsolution. Cryovolcanism seems plausible on dwarf planets in light of images recently returned by spacecrafts. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of dwarf planet evolution, processes, and habitability.

Contributors

Agent

Created

Date Created
  • 2015

153302-Thumbnail Image.png

Application of isoleucine epimerization to assess terrestrial contamination and constrain the duration and effects of aqueous alteration of carbonaceous chondrite meteorites

Description

Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material

Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well.

CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop long-lived, large-scale geological processes. These bodies were large enough, however, to experience some degree of heating due to the decay of radiogenic isotopes, and the meteorite record suggests the existence of 100-150 parent bodies which experienced varying degrees of thermal and aqueous alteration for the first several 10 Myr of Solar System history.

The first chapter of this dissertation reviews literature addressing aqueous alteration as an essential participant in parent body geochemistry, organic synthesis, or both (though papers which address both are rare). The second chapter is a published organic analysis of the soluble organic material of Bells, an unclassified type 2 chondrite. Analytical approaches to assess terrestrial contamination of meteorite samples are also reviewed in the first chapter to allow introduction in chapter 3 of kinetic modeling which rules out certain cases of contamination and constrains the timing of thermal and aqueous alteration. This is the first known application of isoleucine epimerization for either of these purposes. Chapter 4 is a kinetic study of D-allo-isoleucine epimerization to establish its behavior in systems with large, relative abundances of alloisoleucine to isoleucine. Previous epimerization studies for paleontological or geological purposes began with L-isoleucine, the only protein amino acid of the four isoleucine stereoisomers.

Kinetic model calculations using isoleucine stereoisomer abundances from 7 CR chondrites constrain the total duration of the amino acids' residence in the aqueous phase. The comparatively short timescales produced by the presented modeling elicit hypotheses for protection or transport of the amino acids within the CR parent body.

Contributors

Agent

Created

Date Created
  • 2014

151082-Thumbnail Image.png

Theoretical and experimental studies of cryogenic and hydrothermal organic geochemistry

Description

This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon

This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most famously as lakes. Photochemical reactions produce solid organics in Titan's atmosphere, and these materials settle onto the surface. At the surface, liquids can interact with solids, and geochemical processes can occur. To better understand these processes, I developed a thermodynamic model that can be used to calculate the solubilities of gases and solids in liquid hydrocarbons at cryogenic temperatures. The model was parameterized using experimental data, and provides a good fit to the data. Application of the model to Titan reveals that the equilibrium composition of surface liquids depends on the abundance of methane in the local atmosphere. The model also indicates that solid acetylene should be quite soluble in surface liquids, which implies that acetylene-rich rocks should be susceptible to chemical erosion, and acetylene evaporites may form on Titan. In the latter half of this dissertation, I focus on hot organic geochemistry below the surface of the Earth. Organic compounds are common in sediments. Burial of sediments leads to changes in physical and chemical conditions, promoting organic reactions. An important organic reaction in subsurface environments is decarboxylation, which generates hydrocarbons and carbon dioxide from simple organic acids. Fundamental knowledge about decarboxylation is required to better understand how the organic and inorganic compositions of sediments evolve in response to changing geochemical conditions. I performed experiments with the model compound phenylacetic acid to obtain information about mechanisms of decarboxylation in hydrothermal fluids. Patterns in rates of decarboxylation of substituted phenylacetic acids point to a mechanism that proceeds through a ring-protonated zwitterion of phenylacetic acid. In contrast, substituted sodium phenylacetates exhibit a different kinetic pattern, one that is consistent with the formation of the benzyl anion as an intermediate. Results from experiments with added hydrochloric acid or sodium hydroxide, and deuterated water agree with these interpretations. Thus, speciation dictates mechanism of decarboxylation.

Contributors

Agent

Created

Date Created
  • 2012

156969-Thumbnail Image.png

Changes in Microbial Communities and Geochemical Energy Supplies Across the Photosynthetic Fringe of Hot Spring Outflows in Yellowstone National Park

Description

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve hot spring systems. Additionally, field measurements of dissolved oxygen, ferrous iron, and total sulfide were combined with laboratory analyses of sulfate, nitrate, total ammonium, dissolved inorganic carbon, dissolved methane, dissolved hydrogen, and dissolved carbon monoxide were used to calculate the available energy from 58 potential metabolisms. Results were ranked to identify those that yield the most energy according to the geochemical conditions of each system. Of the 46 samples taken across twelve systems, all showed the greatest energy yields using oxygen as the main electron acceptor, followed by nitrate. On the other hand, ammonium or ammonia, depending on pH, showed the greatest energy yields as an electron donor, followed by H2S or HS-. While some sequenced taxa reflect potential biotic participants in the sulfur cycle of these hot spring systems, many sample locations that yield the most energy from ammonium/ammonia oxidation have low relative abundances of known ammonium/ammonia oxidizers, indicating potentially untapped sources of chemotrophic energy or perhaps poorly understood metabolic capabilities of cultured chemotrophs.

Contributors

Agent

Created

Date Created
  • 2018