Matching Items (9)

128649-Thumbnail Image.png

Toxic Oligomeric Alpha-Synuclein Variants Present in Human Parkinson’s Disease Brains Are Differentially Generated in Mammalian Cell Models

Description

Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct

Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct oligomeric α-synuclein aggregates are present in human post-mortem PD brain tissue and are responsible for the bulk of α-synuclein induced toxicity in brain homogenates from PD samples. Two antibody fragments that selectively bind the different oligomeric α-synuclein variants block this α-synuclein induced toxicity and are useful tools to probe how various cell models replicate the α-synuclein aggregation pattern of human PD brain. Using these reagents, we show that mammalian cell type strongly influences α-synuclein aggregation, where neuronal cells best replicate the PD brain α-synuclein aggregation profile. Overexpression of α-synuclein in the different cell lines increased protein aggregation but did not alter the morphology of the oligomeric aggregates generated. Differentiation of the neuronal cells into a cholinergic-like or dopaminergic-like phenotype increased the levels of oligomeric α-synuclein where the aggregates were localized in cell neurites and cell bodies.

Contributors

Agent

Created

Date Created
  • 2015-07-22

128854-Thumbnail Image.png

Human α4β2 Nicotinic Acetylcholine Receptor as a Novel Target of Oligomeric α-Synuclein

Description

Cigarette smoking is associated with a decreased incidence of Parkinson disease (PD) through unknown mechanisms. Interestingly, a decrease in the numbers of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in PD patients

Cigarette smoking is associated with a decreased incidence of Parkinson disease (PD) through unknown mechanisms. Interestingly, a decrease in the numbers of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in PD patients suggests an α4β2-nAChR-mediated cholinergic deficit in PD. Although oligomeric forms of α-synuclein have been recognized to be toxic and involved in the pathogenesis of PD, their direct effects on nAChR-mediated cholinergic signaling remains undefined. Here, we report for the first time that oligomeric α-synuclein selectively inhibits human α4β2-nAChR-mediated currents in a dose-dependent, non-competitive and use-independent manner. We show that pre-loading cells with guanyl-5′-yl thiophosphate fails to prevent this inhibition, suggesting that the α-synuclein-induced inhibition of α4β2-nAChR function is not mediated by nAChR internalization. By using a pharmacological approach and cultures expressing transfected human nAChRs, we have shown a clear effect of oligomeric α-synuclein on α4β2-nAChRs, but not on α4β4- or α7-nAChRs, suggesting nAChR subunit selectivity of oligomeric α-synuclein-induced inhibition. In addition, by combining the size exclusion chromatography and atomic force microscopy (AFM) analyses, we find that only large (>4 nm) oligomeric α-synuclein aggregates (but not monomeric, small oligomeric or fibrillar α-synuclein aggregates) exhibit the inhibitory effect on human α4β2-nAChRs. Collectively, we have provided direct evidence that α4β2-nAChR is a sensitive target to mediate oligomeric α-synuclein-induced modulation of cholinergic signaling, and our data imply that therapeutic strategies targeted toward α4β2-nAChRs may have potential for developing new treatments for PD.

Contributors

Agent

Created

Date Created
  • 2013-02-10

156920-Thumbnail Image.png

A Mouse Model of Serotonin 1B Receptor Modulation of Cocaine and Methamphetamine Craving

Description

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA)

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.

Contributors

Agent

Created

Date Created
  • 2018

151489-Thumbnail Image.png

Intervent and compromise in Sang Hu's movies from 1947 to 1948

Description

During 1947-1948, three commercial films: Everlasting Love( 1947) Long Live the Wife (1947) and Happiness and Sorrow of Middle Ages (1948) from the director Sang Hu were released. Although the

During 1947-1948, three commercial films: Everlasting Love( 1947) Long Live the Wife (1947) and Happiness and Sorrow of Middle Ages (1948) from the director Sang Hu were released. Although the results from box-office were stunning, they suffered fierce criticism from progressive critics largely because the films lacked descriptions of China as a nation-state with critical explorations on nationalism, anti-imperialism, and feudalism. This ideological bias resulted in a long time neglect of the artistic and social value of these three films. This paper attempts to analyze the directors original intention through the love story vehicle, illustrate his concern toward individuals, society, urban culture and moral standards and further discuss this new film genre through a comparison of today's film market. In my opinions, his films contain considerable artistic and social values which deserve scholarly attentions. They show great compassion toward the dilemma of ordinary human beings and privilege the perspectives of common citizens; The director depicts various kinds of interpersonal relationships in a semi-colonial city and thus demonstrates considerable concern with the social realities. In their particular political environment, these films negotiate the economic market and yet successfully contribute their own intervention in the wider cultural discussion of post-war social reconstruction and the development of ethical values.

Contributors

Agent

Created

Date Created
  • 2012

155573-Thumbnail Image.png

Disrupted synaptic transmission and abnormal short-term synaptic plasticity in an Angelman syndrome mouse model

Description

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of the enzyme influences the nervous system development remains unknown. We hypothesize that impaired metabolism of proteins, most likely those related to E6-AP substrates, may alter the developmental trajectory of neuronal structures including dendrites, spines and synaptic proteins, which leads to disrupted activity/experience-dependent synaptic plasticity and maturation. To test this hypothesis, we conducted a detailed investigation on neuronal morphology and electrophysiological properties in the prefrontal cortex (PFC) layer 5 (L5) corticostriatal pyramidal neurons (target neurons). We found smaller soma size in the maternal Ube3a deficient mice (m-/p+; 'AS' mice) at postnatal 17-19 (P17-19), P28-35 and older than 70 days (>P70), and decreased basal dendritic processes at P28-35. Surprisingly, both excitatory and inhibitory miniature postsynaptic currents (mEPSCs and mIPSCs) decreased on these neurons. These neurons also exhibited abnormalities in the local neural circuits, short-term synaptic plasticity and AMPA/NMDA ratio: the excitatory inputs from L2/3 and L5A, and inhibitory inputs from L5 significantly reduced in AS mice from P17-19; Both the release probability (Pr) and readily-releasable vesicle (RRV) pool replenishment of presynaptic neurons of the target neurons were disrupted at P17-19 and P28-35, and the change of RRV pool replenishment maintained through adulthood (>P70). The AMPA/NMDA ratio showed abnormality in the L5 corticostriatal neurons of PFC in AS mice older than P28-35, during which it decreased significantly compared to that of age-matched WT littermates. Western Blot analysis revealed that the expression level of a key regulator of the cytoskeleton system, Rho family small GTPase cell division control protein 42 homolog (cdc42), reduced significantly in the PFC of AS mice at P28-35.These impairments of synaptic transmission and short-term synaptic plasticity may account for the impaired neuronal morphology and synaptic deficits observed in the PFC target neurons, and contribute to the phenotypes in AS model mice. The present work reveals for the first time that the E6-AP deficiency influences brain function in both brain region-specific and age-dependent ways, demonstrates the functional impairment at the neural circuit level, and reveals that the presynaptic mechanisms are disrupted in AS model. These novel findings shed light on our understanding of the AS pathogenesis and inform potential novel therapeutic explorations.

Contributors

Agent

Created

Date Created
  • 2017

157165-Thumbnail Image.png

Modulation of the endogenous cannabinoid system as a therapeutic target in the treatment of mental health disorders

Description

Development of effective therapeutic interventions for the treatment of mental health disorders has been a significant driving force in the search to understand the human brain. Current treatments for

Development of effective therapeutic interventions for the treatment of mental health disorders has been a significant driving force in the search to understand the human brain. Current treatments for mental health disorders rely on modulating neurotransmitter systems such as norepinephrine (NE), serotonin (5-HT), dopamine (DA) and γ-aminobutyric acid (GABA) to achieve clinically relevant relief of symptoms. While many medications are available to the clinician that individually target these neural systems, treatment often results in patients reporting unwanted side effects or experiencing incomplete relief. To counter this lack of treatment efficacy, further investigation of other avenues for achieving similar or better outcomes and potentially reach patients refractory to common therapies must be undertaken. One of these potential new target systems is the endogenous cannabinoid system (ECS), which is currently composed of cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). These metabotropic seven transmembrane (7-TM) loop G-protein coupled receptors (GPCR) are responsible for mediating the effects of acute Cannabis ingestion as well as modulating several core functions of the nervous system including emotion, memory, and learning behavior. Due ubiquitous expression of ECS proteins, there is broad overlap between brain regions that show high levels of receptor expression and those thought to be involved in the etiology of a range of mental health disorders including depression, anxiety and schizophrenia. Consequently, modulation of cannabinoid receptor function is a novel and potentially clinically relevant mechanism for influencing the levels of other neuromodulators and neurotransmitters, such as dopamine, that are known to play crucial roles in the progression of mental illness. In addition, characterization of endogenous cannabinoids and cannabinoid receptors with respect to their normal physiological function and possible roles in pathophysiology may provide insight for the development of future ECS-based therapies.

Contributors

Agent

Created

Date Created
  • 2019

153514-Thumbnail Image.png

Mu-opioid receptor: pAKT signaling in the ventral tegmental area is critical for the behavioral and cellular consequences of social stress

Description

Intermittent social defeat stress produces vulnerability to drugs of abuse, a phenomena known as cross-sensitization, which is proceeded by a corresponding upregulation of ventral tegmental area (VTA) mu-opioid receptors (MORs).

Intermittent social defeat stress produces vulnerability to drugs of abuse, a phenomena known as cross-sensitization, which is proceeded by a corresponding upregulation of ventral tegmental area (VTA) mu-opioid receptors (MORs). Since VTA MORs are implicated in the expression of psychostimulant sensitization, they may also mediate social stress-induced vulnerability to drugs of abuse. Social stress and drugs of abuse increase mesolimbic brain-derived neurotrophic factor (BDNF) signaling with its receptor, tropomyosin-related kinase B (TrkB). These studies examined whether VTA MOR signaling is important for the behavioral and cellular consequences of social stress. First, the function of VTA MORs in the behavioral consequences of intermittent social defeat stress was investigated. Lentivirus-mediated knockdown of VTA MORs prevented social stress-induced cross-sensitization, as well as stress-induced social avoidance and weight gain deficits. Next it was examined whether VTA MOR expression is critical for stress-induced alterations in the mesocorticolimbic circuit. At the time cross-sensitization was known to occur, lentivirus-mediated knockdown of VTA MORs prevented stress-induced increases in VTA BDNF and its receptor, TrkB in the nucleus accumbens (NAc), and attenuated NAc expression of delta FosB. There was no effect of either stress or virus on BDNF expression in the prefrontal cortex. Since social stress-induced upregulation of VTA MORs is necessary for consequences of social stress, next activity dependent changes in AKT, a downstream target of MOR stimulation associated with sensitization to psychostimulant drugs, were investigated. Using fluorescent immunohistochemical double labeling for the active form of AKT (pAKT) and markers of either GABA or dopamine neurons in the VTA, it was determined that social stress significantly increased the expression of pAKT in GABA, but not dopamine neurons, and that this effect was dependent on VTA MOR expression. Moreover, intra-VTA inhibition of pAKT during stress prevented stress-induced weight gain deficits, while acute inhibition of VTA pAKT blocked the expression of cross-sensitization in subjects that had previously exhibited sensitized locomotor activity. Together these results suggest that social stress upregulates MORs on VTA GABA neurons, resulting in AKT phosphorylation, and that increased VTA MOR-pAKT signaling may represent a novel therapeutic target for the intervention of substance abuse disorders.

Contributors

Agent

Created

Date Created
  • 2015

153409-Thumbnail Image.png

The roles of nicotinic acetylcholine receptors in the ventral tegmental area: implications in nicotine and ethanol addiction and drug intervention

Description

Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known.

Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known. EtOH has been shown to affect some nicotinic acetylcholine receptors (nAChRs), which potentially underlies NIC-EtOH codependence. Ventral Tegmental Area (VTA) dopamine (DA) and γ-aminobutyric acid (GABA) neurons express different nAChR subtypes, whose net activation results in enhancement of DA release in the Prefrontal Cortex (PFC) and Nucleus Accumbens (NAc). Enhancement of DA transmission in this mesocorticolimbic system is thought to lead to rewarding properties of EtOH and NIC, clarification of which is relevant to public health and clinical diseases. The aim of this study was to elucidate pharmacological mechanisms of action employed by both NIC and EtOH through nAChRs in VTA neurons by evaluating behavioral, network, synaptic and receptor functions therein. It was hypothesized that VTA GABA neurons are controlled by α7 nAChRs on presynaptic GLUergic terminals and α6 nAChRs on presynaptic GABAergic terminals. NIC and EtOH, via these nAChRs, modulate VTA GABA neuronal function. This modulation may underlie NIC and EtOH reward and reinforcement, while pharmacological manipulation of these nAChRs may be a therapeutic strategy to treat NIC or EtOH dependence. This data demonstrates that in VTA GABA neurons, α7 nAChRs on GLUergic terminals play a key role in the mediation of local NIC-induced firing increase. α6*-nAChRs on GABA terminals enhances presynaptic GABA release, and leads to greater inhibition to VTA GABA neurons, which results in an increase VTA DA neuron firing via a disinhibition mechanism. Genetic knockout of these nAChRs significantly prevents EtOH-induced animal conditioned place preference (CPP). Furthermore, levo-tetrahydropalmadine (l-THP), a compound purified from natural Chinese herbs, blocks nAChRs, prevents NIC-induced DA neuronal firing, and eliminates NIC CPP, suggesting it as a promising candidate in a new generation of interventions for smoking cessation. Improved understanding of underlying mechanisms and development of new drugs will increase the number of successful quitters each year and dramatically improve the quality of life for millions suffering from addiction, as well as those around them.

Contributors

Agent

Created

Date Created
  • 2015

149812-Thumbnail Image.png

A novel mechanism underlies pathological, beta-amyloid-induced neuronal hyperexcitation

Description

Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP

Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy in AD patients as well as AD-related synaptic deficits and neurodegeneration. Given that there is significant amyloid-β (Aβ) accumulation and deposition in AD brain, Aβ exposure ultimately may be responsible for neural hyper-excitation in both AD patients and animal models. Emerging evidence indicates that α7 nicotinic acetylcholine receptors (α7-nAChR) are involved in AD pathology, because synaptic impairment and learning and memory deficits in a hAPPα7-/- mouse model are decreased by nAChR α7 subunit gene deletion. Given that Aβ potently modulates α7-nAChR function, that α7-nAChR expression is significantly enhanced in both AD patients and animal models, and that α7-nAChR play an important role in regulating neuronal excitability, it is reasonable that α7-nAChRs may contribute to Aβ-induced neural hyperexcitation. We hypothesize that increased α7-nAChR expression and function as a consequence of Aβ exposure is important in Aβ-induced neural hyperexcitation. In this project, we found that exposure of Aβ aggregates at a nanomolar range induces neuronal hyperexcitation and toxicity via an upregulation of α7-nAChR in cultured hippocampus pyramidal neurons. Aβ up-regulates α7-nAChRs function and expression through a post translational mechanism. α7-nAChR up-regulation occurs prior to Aβ-induced neuronal hyperexcitation and toxicity. Moreover, inhibition of α7-nAChR or deletion of α7-nAChR prevented Aβ induced neuronal hyperexcitation and toxicity, which suggests that α7-nAChRs are required for Aβ induced neuronal hyperexcitation and toxicity. These results reveal a profound role for α7-nAChR in mediating Aβ-induced neuronal hyperexcitation and toxicity and predict that Aβ-induced up-regulation of α7-nAChR could be an early and critical event in AD etiopathogenesis. Drugs targeting α7-nAChR or seizure activity could be viable therapies for AD treatment.

Contributors

Agent

Created

Date Created
  • 2011