Matching Items (16)

133986-Thumbnail Image.png

A Strategy for Improved Traffic Flow

Description

Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the

Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to an intersection forcing cars to stop further away from the final intersection in smaller queues instead of congregating in a large queue before the final intersection. The simulation software package AnyLogic was used to model a simple two-lane intersection with and without light metering. It was found that light metering almost eliminates start-up delay by preventing a long queue to form in front of the modeled intersection. Shorter queue lengths and reduction in the start-up delays prevents cycle failure and significantly reduces the overall delay for the intersection. However, frequent deceleration and acceleration for a few of the cars occurs before each light meter. This solution significantly reduces the traffic density before the intersection and the overall delay but does not appear to be a better emission alternative due to an increase in acceleration. Further research would need to quantify the difference in emissions for this model compared to a standard intersection.

Contributors

Agent

Created

Date Created
  • 2018-05

134111-Thumbnail Image.png

An optimization model for emergency response crew location within a theme park

Description

Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the

Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests of a park, it is important to make the best decision when selecting the location for emergency response crews. A theme park is different from a regular residential or commercial area because the crowds and shows block certain routes, and they change throughout the day. We propose an optimization model that selects staging locations for emergency medical responders in a theme park to maximize the number of responses that can occur within a pre-specified time. The staging areas are selected from a candidate set of restricted access locations where the responders can store their equipment. Our solution approach considers all routes to access any park location, including areas that are unavailable to a regular guest. Theme parks are a highly dynamic environment. Because special events occurring in the park at certain hours (e.g., parades) might impact the responders' travel times, our model's decisions also include the time dimension in the location and re-location of the responders. Our solution provides the optimal location of the responders for each time partition, including backup responders. When an optimal solution is found, the model is also designed to consider alternate optimal solutions that provide a more balanced workload for the crews.

Contributors

Created

Date Created
  • 2017-12

158103-Thumbnail Image.png

Global Optimization Using Piecewise Linear Approximation

Description

Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early

Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early stages, MILP methods and software tools had improved in their efficiency in the past few years. They are now fast and robust even for problems with millions of variables. Therefore, it is desirable to use MILP software to solve mixed integer nonlinear programming (MINLP) problems. For an MINLP problem to be solved by an MILP solver, its nonlinear functions must be transformed to linear ones. The most common method to do the transformation is the piecewise linear approximation (PLA). This dissertation will summarize the types of optimization and the most important tools and methods, and will discuss in depth the PLA tool. PLA will be done using nonuniform partitioning of the domain of the variables involved in the function that will be approximated. Also partial PLA models that approximate only parts of a complicated optimization problem will be introduced. Computational experiments will be done and the results will show that nonuniform partitioning and partial PLA can be beneficial.

Contributors

Agent

Created

Date Created
  • 2020

156595-Thumbnail Image.png

A Spatial Decision Support System for Oil Spill Response and Recovery

Description

Coastal areas are susceptible to man-made disasters, such as oil spills, which not

only have a dreadful impact on the lives of coastal communities and businesses but also

have lasting and hazardous

Coastal areas are susceptible to man-made disasters, such as oil spills, which not

only have a dreadful impact on the lives of coastal communities and businesses but also

have lasting and hazardous consequences. The United States coastal areas, especially

the Gulf of Mexico, have witnessed devastating oil spills of varied sizes and durations

that resulted in major economic and ecological losses. These disasters affected the oil,

housing, forestry, tourism, and fishing industries with overall costs exceeding billions

of dollars (Baade et al. (2007); Smith et al. (2011)). Extensive research has been

done with respect to oil spill simulation techniques, spatial optimization models, and

innovative strategies to deal with spill response and planning efforts. However, most

of the research done in those areas is done independently of each other, leaving a

conceptual void between them.

In the following work, this thesis presents a Spatial Decision Support System

(SDSS), which efficiently integrates the independent facets of spill modeling techniques

and spatial optimization to enable officials to investigate and explore the various

options to clean up an offshore oil spill to make a more informed decision. This

thesis utilizes Blowout and Spill Occurrence Model (BLOSOM) developed by Sim

et al. (2015) to simulate hypothetical oil spill scenarios, followed by the Oil Spill

Cleanup and Operational Model (OSCOM) developed by Grubesic et al. (2017) to

spatially optimize the response efforts. The results of this combination are visualized

in the SDSS, featuring geographical maps, so the boat ramps from which the response

should be launched can be easily identified along with the amount of oil that hits the

shore thereby visualizing the intensity of the impact of the spill in the coastal areas

for various cleanup targets.

Contributors

Agent

Created

Date Created
  • 2018

157744-Thumbnail Image.png

The impact of graph layouts on the perception of graph properties

Description

Graphs are commonly used visualization tools in a variety of fields. Algorithms have been proposed that claim to improve the readability of graphs by reducing edge crossings, adjusting edge length,

Graphs are commonly used visualization tools in a variety of fields. Algorithms have been proposed that claim to improve the readability of graphs by reducing edge crossings, adjusting edge length, or some other means. However, little research has been done to determine which of these algorithms best suit human perception for particular graph properties. This thesis explores four different graph properties: average local clustering coefficient (ALCC), global clustering coefficient (GCC), number of triangles (NT), and diameter. For each of these properties, three different graph layouts are applied to represent three different approaches to graph visualization: multidimensional scaling (MDS), force directed (FD), and tsNET. In a series of studies conducted through the crowdsourcing platform Amazon Mechanical Turk, participants are tasked with discriminating between two graphs in order to determine their just noticeable differences (JNDs) for the four graph properties and three layout algorithm pairs. These results are analyzed using previously established methods presented by Rensink et al. and Kay and Heer.The average JNDs are analyzed using a linear model that determines whether the property-layout pair seems to follow Weber's Law, and the individual JNDs are run through a log-linear model to determine whether it is possible to model the individual variance of the participant's JNDs. The models are evaluated using the R2 score to determine if they adequately explain the data and compared using the Mann-Whitney pairwise U-test to determine whether the layout has a significant effect on the perception of the graph property. These tests indicate that the data collected in the studies can not always be modelled well with either the linear model or log-linear model, which suggests that some properties may not follow Weber's Law. Additionally, the layout algorithm is not found to have a significant impact on the perception of some of these properties.

Contributors

Agent

Created

Date Created
  • 2019

158514-Thumbnail Image.png

Capacity Planning, Production and Distribution Scheduling for a Multi-Facility and Multi-Product Supply Chain Network

Description

In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible

In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible cost. Designing an optimal supply chain by optimizing supply chain operations and decisions is key to achieving these goals.

In this research, a capacity planning and production scheduling mathematical model for a multi-facility and multiple product supply chain network with significant capital and labor costs is first proposed. This model considers the key levers of capacity configuration at production plants namely, shifts, run rate, down periods, finished goods inventory management and overtime. It suggests a minimum cost plan for meeting medium range demand forecasts that indicates production and inventory levels at plants by time period, the associated manpower plan and outbound shipments over the planning horizon. This dissertation then investigates two model extensions: production flexibility and pricing. In the first extension, the cost and benefits of investing in production flexibility is studied. In the second extension, product pricing decisions are added to the model for demand shaping taking into account price elasticity of demand.

The research develops methodologies to optimize supply chain operations by determining the optimal capacity plan and optimal flows of products among facilities based on a nonlinear mixed integer programming formulation. For large size real life cases the problem is intractable. An alternate formulation and an iterative heuristic algorithm are proposed and tested. The performance and bounds for the heuristic are evaluated. A real life case study in the automotive industry is considered for the implementation of the proposed models. The implementation results illustrate that the proposed method provides valuable insights for assisting the decision making process in the supply chain and provides significant improvement over current practice.

Contributors

Agent

Created

Date Created
  • 2020

158602-Thumbnail Image.png

Modeling Cascading Network Disruptions under Uncertainty For Managing Hurricane Evacuation

Description

Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of

Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of the emergency responses. In the case of a hurricane event, uncertainties and corresponding impacts during a storm event can quickly cascade. Over the past decades, various storm forecast models have been developed to predict the storm uncertainties; however, access to the usage of these models is limited. Hence, as the first part of this research, a data-driven simulation model is developed with aim to generate spatial-temporal storm predicted hazards for each possible hurricane track modeled. The simulation model identifies a means to represent uncertainty in storm’s movement and its associated potential hazards in the form of probabilistic scenarios tree where each branch is associated with scenario-level storm track and weather profile. Storm hazards, such as strong winds, torrential rain, and storm surges, can inflict significant damage on the road network and affect the population’s ability to move during the storm event. A cascading network failure algorithm is introduced in the second part of the research. The algorithm takes the scenario-level storm hazards to predict uncertainties in mobility states over the storm event. In the third part of the research, a methodology is proposed to generate a sequence of actions that simultaneously solve the evacuation flow scheduling and suggested routes which minimize the total flow time, or the makespan, for the evacuation process from origins to destinations in the resulting stochastic time-dependent network. The methodology is implemented for the 2017 Hurricane Irma case study to recommend an evacuation policy for Manatee County, FL. The results are compared with evacuation plans for assumed scenarios; the research suggests that evacuation recommendations that are based on single scenarios reduce the effectiveness of the evacuation procedure. The overall contributions of the research presented here are new methodologies to: (1) predict and visualize the spatial-temporal impacts of an oncoming storm event, (2) predict uncertainties in the impacts to transportation infrastructure and mobility, and (3) determine the quickest evacuation schedule and routes under the uncertainties within the resulting stochastic transportation networks.

Contributors

Agent

Created

Date Created
  • 2020

155983-Thumbnail Image.png

Network maintenance and capacity management with applications in transportation

Description

This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost

This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows. The goal of optional network capacity reduction is to selectively reduce the capacity of some links to improve the overall efficiency of user-optimized flows, where each traveler takes the route that minimizes the traveler’s trip cost. In this dissertation, both managing mandatory and optional network capacity reductions are addressed with the consideration of network-wide flow diversions due to changed link capacities.

This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule.

Based on the Braess’ paradox that removing some links may alleviate the congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce the capacity of selected links to improve the efficiency of the resultant user-optimized flows. A heuristic is developed to identify links to reduce capacity, and the corresponding capacity reduction amounts, to get more efficient total flows. Experiments on real networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic developed solves real-world test cases even when commercial solvers fail.

Contributors

Agent

Created

Date Created
  • 2017

156215-Thumbnail Image.png

Towards More Intuitive Frameworks For The Project Portfolio Selection Problem

Description

Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper

Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of portfolios on many different criteria and allows decision makers (DM) to bring their experience and insight to the table when making a decision is discussed. A binary fractional integer program provides additional choices by optimizing portfolios on cost-benefit ratios over multiple time periods is also presented. By combining this framework with an `elimination by aspects' model of decision making, DMs evaluate portfolios on various objectives and ensure the selection of a portfolio most in line with their goals. By presenting a modeling framework to easily model a large number of project inter-dependencies and an evolutionary algorithm that is intelligently guided in the search for attractive portfolios by a beam search heuristic, practitioners are given a ready recipe to solve big problem instances to generate attractive project portfolios for their organizations. Finally, this dissertation attempts to address the problem of risk and uncertainty in project portfolio selection. After exploring the selection of portfolios based on trade-offs between a primary benefit and a primary cost, the third important dimension of uncertainty of outcome and the risk a decision maker is willing to take on in their quest to select the best portfolio for their organization is examined.

Contributors

Agent

Created

Date Created
  • 2018

158577-Thumbnail Image.png

Structural Decomposition Methods for Sparse Large-Scale Optimization

Description

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use tailored strategies based on iterative refinement (outer-approximations). The proposed algorithms are not rooted in duality theory, providing an alternative to existing methods based on linear programming relaxations. However, it is possible to embed existing decomposition methods into the proposed framework. These general decomposition principles extend to other combinatorial optimization problems.

The first problem is a route assignment and scheduling problem in which a set of vehicles need to traverse a directed network while maintaining a minimum inter-vehicle distance at any time. This problem is inspired by applications in hazmat logistics and the coordination of autonomous agents. The proposed approach includes realistic features such as continuous-time vehicle scheduling, heterogeneous speeds, minimum and maximum waiting times at any node, among others.

The second problem is a fixed-charge network design, which aims to find a minimum-cost plan to transport a target amount of a commodity between known origins and destinations. In addition to the typical flow decisions, the model chooses the capacity of each arc and selects sources and sinks. The proposed algorithms admit any nondecreasing piecewise linear cost structure. This model is applied to the Carbon Capture and Storage (CCS) problem, which is to design a minimum-cost pipeline network to transport CO2 between industrial sources and geologic reservoirs for long-term storage.

The third problem extends the proposed decomposition framework to a special case of joint chance constraint programming with independent random variables. This model is applied to the probabilistic transportation problem, where demands are assumed stochastic and independent. Using an empirical probability distribution, this problem is formulated as an integer program with the goal of finding a minimum-cost distribution plan that satisfies all the demands with a minimum given probability. The proposed scalable algorithm is based on a concave envelop approximation of the empirical probability function, which is iteratively refined as needed.

Contributors

Agent

Created

Date Created
  • 2020