Matching Items (16)

133462-Thumbnail Image.png

The Potential Use for Strong Gravitational Lensing in the Detection of Dark Matter

Description

Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently

Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently the most precise way to quantify the presence of dark matter in galaxies. In addition, strong gravitational lensing allows astronomers to observe directly the light from the background source, as it will be both magnified in brightness and easier to resolve. Current computer models can essentially "remove" the foreground galaxy/galaxies to isolate and reconstruct an image of the background source with a resolution greater than that observed without lensing. Both the measurement of dark matter within galaxies and the direct observation of lensed galaxies are goals for this project. This was done using LENSTOOL, a software package chosen for the project, and originally designed to perform such calculations efficiently. While neither goal was met in its entirety, this paper reflects the results of this project throughout the course of the past year.

Contributors

Agent

Created

Date Created
  • 2018-05

132732-Thumbnail Image.png

Detections of GRBs with the Telescope DDOTI and Code Manuals

Description

At the start of this honors thesis project, a new telescope called the deca-degree optical transient imager (DDOTI) needed assistance to help it gather photometric data about Gamma Ray Bursts

At the start of this honors thesis project, a new telescope called the deca-degree optical transient imager (DDOTI) needed assistance to help it gather photometric data about Gamma Ray Bursts (GRBs). Contributions to help DDOTI produce scientifically ready reductions will be discussed.
First, performance assessment tests were run in order to prevent data backlog and optimize the way in which DDOTI reduces the data it collects. The results of these tests yielded a general framework regarding how DDOTI should reduce collected images depending on how many computer cores can be used. These tests also indicated that DDOTI’s alignment portion of the reduction code (ddoti_align) should be completed after every image is collected, while the other parts of the reduction software (ddoti_stack, ddoti_phot, ddoti_summary) should be run after every four images are collected.
Second, reductions created by DDOTI were inspected to determine if the telescope’s reduction software was working properly. Reductions were observed and indicated that two reduction related problems needed to be corrected by the research team before DDOTI would be ready for future scientific work. The first identified problem was that DDOTI’s reduction code was not properly correcting optical distortions for one of DDOTI’s two functional cameras. The second problem was that the reduction code was not correcting for atmospheric refraction. As a result, below zenith distances of approximately sixty degrees, ddoti_align was unable to align detected sources to their catalogue equivalents due to their distorted positions.
Third, code manuals were produced in both English and Spanish so that English and Spanish-speaking researchers working on DDOTI could understand how its reductions software reduces images. Functional flow chart diagrams were also produced only in English to graphically describe the flow of information through DDOTI’s reduction software.
These three contributions helped DDOTI to more accurately be able to observe GRBs. DDOTI’s improved reduction abilities were confirmed by a produced report about GRB 190129B after a 10-hour observation, and by the fact that DDOTI could accurately observed asteroid fields. In addition, code manuals and functional flow chart diagrams were all produced by the end of this project.

Contributors

Agent

Created

Date Created
  • 2019-05

156967-Thumbnail Image.png

Single photon interferometry and quantum astrophysics

Description

This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic

This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative to the currently used amplitude interferometry.

Description of a modular intensity interferometer system using commercially available single-photon detectors is given. Calculations on the sensitivity and \emph{uv}-plane coverage using these modules mounted on existing telescopes on Kitt Peak, Arizona is presented.

Determining fundamental stellar properties is essential for testing models of stellar evolution as well as for deriving physical properties of transiting exoplanets. The proposed method shows great promise in measuring the angular size of stars. Simulations indicate that it is possible to measure stellar diameters of bright stars with AB magnitude <6 with a precision of >5% in a single night of observation.

Additionally, a description is given of a custom time-to-digital converter designed to time tag individual photons from multiple single-photon detectors with high count rate, continuous data logging, and low systematics. The instrument utilizes a tapped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. The TDC is implemented on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows for continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set-up to work with up to ten independent channels. Laboratory characterization of the system, including RF, pick up and mitigation, as well as measurement of in-lab photon correlations from an incoherent light source (artificial star), are presented. Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIe 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.

Furthermore, a modified nulling interferometer with image inversion is proposed, for direct imaging of exoplanets below the canonical Rayleigh resolution limit. Image inversion interferometry relies on splitting incoming radiation from a source, either spatially rotating or reflecting the electric field from one arm of the interferometer before recombining the signals and detecting the resulting images in the two output ports with an array of high-speed single-photon detectors. Sources of incoming radiation that have cylindrical symmetry and are centered on the rotation axis will cancel in one of the output ports and add in the other output port. The ability to suppress light from a host star, as well as the ability to resolve past the Rayleigh limit, enables sensitive detection of exoplanets from a stable environment without the need for a coronagraph. The expected number of photons and the corresponding variance in the measurement for different initial contrast ratios are shown, with some first-order theoretical instrumental errors.

Lastly, preliminary results from a sizeable photometric survey are presented. This survey is used to derive bolometric flux alongside from angular size measurements and the effective stellar temperatures.

Contributors

Agent

Created

Date Created
  • 2018

157761-Thumbnail Image.png

Dwarf galaxies as laboratories of protogalaxy physics: canonical star formation laws at low metallicity

Description

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over five orders of magnitude in galaxy luminosity. The effects of primordial metallicities on canonical star-forming laws is an open question: a growing body of evidence suggests that the current empirical star forming laws may not be valid in the unenriched, metal-poor environment of the very early universe.

In the modern universe, nearby dwarf galaxies with less than 1/10th the Solar metal abundance provide an opportunity to recalibrate our star formation laws and study the astrophysics of extremely metal-deficient (XMD) environments in detail. I assemble a sample of nearby dwarf galaxies, all within 100 megaparsecs, with nebular oxygen abundances between 1/5th and 1/50th Solar. I identify the subsample of these galaxies with space-based mid- and far-infrared data, and investigate the effects of extreme metallicities on the infrared-radio relationship. For ten of these galaxies, I have acquired 40 hours of observations with the Jansky Very Large Array (JVLA). C-band (4-8 GHz) radio continuum emission is detected from all 10 of these galaxies. These represent the first radio continuum detections from seven galaxies in this sample: Leo A, UGC 4704, HS 0822+3542, SBS 0940+544, and SBS 1129+476. The radio continuum in these galaxies is strongly associated with the presence of optical H-alpha emission, with spectral slopes suggesting a mix of thermal and non-thermal sources. I use the ratio of the radio and far-infrared emission to investigate behavior of the C-band (4-8 GHz) radio/infrared relation at metallicities below 1/10th Solar.

I compare the low metallicity sample with the 4.8 GHz radio/infrared relationship from the KINGFISHER nearby galaxy sample Tabatabaei et al. 2017 and to the 1.4 GHz radio/infrared relationship from the blue compact dwarf galaxy sample of Wu et al. 2008. The infrared/radio ratio q of the low metallicity galaxies is below the average q of star forming galaxies in the modern universe. I compare these galaxies' infrared and radio luminosities to their corresponding Halpha luminosities, and find that both the infrared/Halpha and the radio/H-alpha ratios are reduced by nearly 1 dex in the low metallicity sample vs. higher metallicity galaxies; however the deficit is not straightforwardly interpreted as a metallicity effect.

Contributors

Agent

Created

Date Created
  • 2018

152990-Thumbnail Image.png

Galaxy evolution with hybrid methods

Description

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.

Contributors

Agent

Created

Date Created
  • 2014

154314-Thumbnail Image.png

Ponds, flows, and ejecta of impact cratering and volcanism: a remote sensing perspective of a dynamic Moon

Description

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.

Contributors

Agent

Created

Date Created
  • 2016

157387-Thumbnail Image.png

The development of unique focal planes for high-resolution suborbital and ground-based exploration

Description

The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid

The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid innovation within the community. Unique focal planes that are rapid-prototyped, low cost, and provide high resolution are key.

In this dissertation the emergent designs of three unique focal planes are discussed. These focal planes were each designed for a different astronomical platform: suborbital balloon, suborbital rocket, and ground-based observatory. The balloon-based payload is a hexapod-actuated focal plane that uses tip-tilt motion to increase angular resolution through the removal of jitter – known as the HExapod Resolution-Enhancement SYstem (HERESY), the suborbital rocket imaging payload is a Jet Propulsion Laboratory (JPL) delta-doped charge-coupled device (CCD) packaged to survive the rigors of launch and image far-ultra-violet (FUV) spectra, and the ground-based observatory payload is a star centroid tracking modification to the balloon version of HERESY for the tip-tilt correction of atmospheric turbulence.

The design, construction, verification, and validation of each focal plane payload is discussed in detail. For HERESY’s balloon implementation, pointing error data from the Stratospheric Terahertz Observatory (STO) Antarctic balloon mission was used to form an experimental lab test setup to demonstrate the hexapod can eliminate jitter in flight-like conditions. For the suborbital rocket focal plane, a harsh set of unit-level tests to ensure the payload could survive launch and space conditions, as well as the characterization and optimization of the JPL detector, are detailed. Finally, a modification of co-mounting a fast-read detector to the HERESY focal plane, for use on ground-based observatories, intended to reduce atmospherically induced tip-tilt error through the centroid tracking of bright natural guidestars, is described.

Contributors

Agent

Created

Date Created
  • 2019

157727-Thumbnail Image.png

Highly multiplexed superconducting detectors and readout electronics for balloon-borne and ground-based far-infrared imaging and polarimetry

Description

This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to

This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras, whose science goals will soon drive the pixel counts of sub-mm detector arrays from the kilopixel to the megapixel regime. The in-flight performance of the readout system was verified during the summer, 2018 flight of ASI's OLIMPO balloon-borne telescope, from Svalbard, Norway. This was the first flight for both LEKID detectors and their associated readout electronics. In winter 2019/2020, the system will fly on NASA's long-duration Balloon Borne Large Aperture Submillimeter Telescope (BLAST-TNG), a sub-mm polarimeter which will map the polarized thermal emission from cosmic dust at 250, 350 and 500 microns (spatial resolution of 30", 41" and 59"). It is also a core system in several upcoming ground based mm-wave instruments which will soon observe at the 50 m Large Millimeter Telescope (e.g., TolTEC, SuperSpec, MUSCAT), at Sierra Negra, Mexico.

The design and verification of the FPGA firmware, software and electronics which make up the system are described in detail. Primary system requirements are derived from the science objectives of BLAST-TNG, and discussed in the context of relevant size, weight, power and cost (SWaP-C) considerations for balloon platforms. The system was used to characterize the instrumental performance of the BLAST-TNG receiver and detector arrays in the lead-up to the 2019/2020 flight attempt from McMurdo Station, Antarctica. The results of this characterization are interpreted by applying a parametric software model of a LEKID detector to the measured data in order to estimate important system parameters, including the optical efficiency, optical passbands and sensitivity.

The role that magnetic fields (B-fields) play in shaping structures on various scales in the interstellar medium is one of the central areas of research which is carried out by sub-mm/FIR observatories. The Davis-Chandrasekhar-Fermi Method (DCFM) is applied to a BLASTPol 2012 map (smoothed to 5') of the inner ~1.25 deg2 of the Carina Nebula Complex (CNC, NGC 3372) in order to estimate the strength of the B-field in the plane-of-the-sky (B-pos). The resulting map contains estimates of B-pos along several thousand sightlines through the CNC. This data analysis pipeline will be used to process maps of the CNC and other science targets which will be produced during the upcoming BLAST-TNG flight. A target selection survey of five nearby external galaxies which will be mapped during the flight is also presented.

Contributors

Agent

Created

Date Created
  • 2019

154026-Thumbnail Image.png

Moving obstacle avoidance for unmanned aerial vehicles

Description

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity

for Unmanned Aerial Vehicles.

Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin’s curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate

these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

Contributors

Agent

Created

Date Created
  • 2015

156675-Thumbnail Image.png

Deep imaging of distant galaxies using the large binocular telescope

Description

In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the

In the past three decades with the deployment of space-based from x-rays to infrared telescopes and operation of 8-10 m class ground based telescopes, a hand-full of regions of the sky have emerged that probe the distant universe over relatively wide fields with the aim of understanding the assembly of apparently faint galaxies. To explore this new frontier, observations were made with the Large Binocular Cameras (LBCs) on the Large Binocular Telescope (LBT) of a well-studied deep field, GOODS-North, which has been observed by a wide range of telescopes from the radio to x-ray. I present a study of the trade-off between depth and resolution using a large number of LBT/LBC U-band and R-band imaging observations in the GOODS-N field. Having acquired over 30 hours of data (315 images with 5-6 minute exposures) for U-band and 27 hours for R-band (828 images with 2 minute exposures), multiple mosaics were generated, starting with images taken under the best atmospheric conditions (FWHM <0.8"). For subsequent mosaics, data with coarser seeing values were added in until the final, deepest mosaic included all images with FWHM <1.8". For each mosaic, object catalogs were made to compare the optimal-resolution, yet shallower image to the low-resolution but deeper image. For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. I conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. For the 220 and 360 brightest galaxies in the U-band and R-band images respectively, there is only a marginal difference between the optimal-resolution and lower-resolution light-profiles and their integrated total fluxes. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light. Finally, I also comment on a collection of galaxies in the field with tidal tails and streams, diffuse plumes, and bridges.

Contributors

Agent

Created

Date Created
  • 2018