Matching Items (18)
Filtering by

Clear all filters

132806-Thumbnail Image.png
Description
The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better

The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better understanding of the dynamics of influenza transmission in order to prevent its spread. Viral DNA sequences examined using bioinformatics methods offer a rich framework with which to monitor the evolution and spread of influenza for public health surveillance. To better understand the influenza epidemic during the severe 2017-2018 season, we established a passive surveillance system at Arizona State University’s Tempe Campus Health Services beginning in January 2018. From this system, nasopharyngeal samples screening positive for influenza were collected. Using these samples, molecular DNA sequences will be generated using a combined multiplex RT-PCR and NGS approach. Phylogenetic analysis will be used to infer the severity and temporal course of the 2017-2018 influenza outbreak on campus as well as the 2018-2019 flu season. Through this surveillance system, we will gain knowledge of the dynamics of influenza spread in a university setting and will use this information to inform public health strategies.
ContributorsMendoza, Lydia Marie (Author) / Scotch, Matthew (Thesis director) / Hogue, Brenda (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133652-Thumbnail Image.png
Description
Title: A Mobile Health Application for Tracking Patients' Health Record Abstract Background: Mobile Health (mHealth) has recently been adopted and used in rural communities in developing countries to improve the quality of healthcare in those areas. Some organizations use mHealth application to track pregnancy and provide routine checkups for pregnant

Title: A Mobile Health Application for Tracking Patients' Health Record Abstract Background: Mobile Health (mHealth) has recently been adopted and used in rural communities in developing countries to improve the quality of healthcare in those areas. Some organizations use mHealth application to track pregnancy and provide routine checkups for pregnant women. Other organizations use mHelath application to provide treatment and counseling services to HIV/AIDs patients, and others are using it to provide treatment and other health care services to the general populations in rural communities. One organization that is using mobile health to bring primary care for the first time in some of the rural communities of Liberia is Last Mile Health. Since 2015, the organization has trained community health assistants (CHAs) to use a mobile health platform called Data Collection Tools (DCTs). The CHAs use the DCT to collect health data, diagnose and treat patients, provide counseling and educational services to their communities, and for referring patients for further care. While it is true that the DCT has many great features, it currently has many limitations such as data storage, data processing, and many others. Objectives: The goals of this study was to 1. Explore some of the mobile health initiatives in developing countries and outline some of the important features of those initiatives. 2. Design a mobile health application (a new version of the Last Mile Health's DCT) that incorporates some of those features that were outlined in objective 1. Method: A comprehensive literature search in PubMed and Arizona State University (ASU) Library databases was conducted to retrieve publications between 2014 and 2017 that contained phrases like "mHealth design", "mHealth implementation" or "mHealth validation". For a publication to refer to mHealth, the publication had to contain the term "mHealth," or contains both the term "health" and one of the following terms: mobile phone, cellular phone, mobile device, text message device, mobile technology, mobile telemedicine, mobile monitoring device, interactive voice response device, or disease management device. Results: The search yielded a total of 1407 publications. Of those, 11 publications met the inclusion criteria and were therefore included in the study. All of the features described in the selected articles were important to the Last Mile Health, but due to issues such as internet accessibility and cellular coverage, only five of those features were selected to be incorporated in the new version of the Last Mile's mobile health system. Using a software called Configure.it, the new version of the Last Mile's mobile health system was built. This new system incorporated features such as user logs, QR code, reminder, simple API, and other features that were identified in the study. The new system also helps to address problems such as data storage and processing that are currently faced by the Last Mile Health organization.
ContributorsKarway, George K. (Author) / Scotch, Matthew (Thesis director) / Kaufman, David (Committee member) / Biomedical Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133301-Thumbnail Image.png
Description
Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics.

Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics. A phylogenetic tree is considered one of the best ways for researchers to visualize and analyze the evolutionary history of a certain virus. The focus of this study was to research HIV phylodynamic and phylogenetic methods. This involved identifying the fast growing HIV transmission clusters and rates for certain risk groups in the US. In order to achieve these results an HIV database was required to retrieve real-time data for implementation, alignment software for multiple sequence alignment, Bayesian analysis software for the development and manipulation of models, and graphical tools for visualizing the output from the models created. This study began by conducting a literature review on HIV phylogeographies and phylodynamics. Sequence data was then obtained from a sequence database to be run in a multiple alignment software. The sequence that was obtained was unaligned which is why the alignment was required. Once the alignment was performed, the same file was loaded into a Bayesian analysis software for model creation of a phylogenetic tree. When the model was created, the tree was edited in a tree visualization software for the user to easily interpret. From this study the output of the tree resulted the way it did, due to a distant homology or the mixing of certain parameters. For a further continuation of this study, it would be interesting to use the same aligned sequence and use different model parameter selections for the initial creation of the model to see how the output changes. This is because one small change for the model parameter could greatly affect the output of the phylogenetic tree.
ContributorsNandan, Meghana (Author) / Scotch, Matthew (Thesis director) / Liu, Li (Committee member) / Biomedical Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134821-Thumbnail Image.png
Description
Mosquito population data is a valuable resource for researchers and public health officials working to limit the spread of deadly zoonotic viruses such as Zika Virus and West Nile Virus. Unfortunately, this data is currently difficult to obtain and aggregate across the United States. Obtaining historical data often requires filing

Mosquito population data is a valuable resource for researchers and public health officials working to limit the spread of deadly zoonotic viruses such as Zika Virus and West Nile Virus. Unfortunately, this data is currently difficult to obtain and aggregate across the United States. Obtaining historical data often requires filing requests to individual States or Counties and hoping for a response. Current online systems available for accessing aggregated data are lacking essential features, or limited in scope. In order to make mosquito population data more accessible for United States researchers, epidemiologists, and public health officials, the MosquitoDB system has been developed. MosquitoDB consists of a JavaScript Web Application, connected to a SQL database, that makes submitting and retrieving United States mosquito population data much simpler and straight forward than alternative systems. The MosquitoDB software project is open source and publically available on GitHub, allowing community scrutiny and contributions to add or improve necessary features. For this Creative Project, the core MosquitoDB system was designed and developed with 3 main features: 1) Web Interface for querying mosquito data. 2) Web Interface for submitting mosquito data. 3) Web Services for querying/retrieving and submitting mosquito data. The Web Interface is essential for common end users, such as researchers and public health officials, to access historical data or submit new data. The Web Services provide building blocks for Web Applications that other developers can use to incorporate data into new applications. The current MosquitoDB system is live at https://zodo.asu.edu/mosquito and the public code repository is available at https://github.com/developerDemetri/mosquitodb.
ContributorsJones-Shargani, Demetrius Paul (Author) / Scotch, Matthew (Thesis director) / Weissenbacher, Davy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137685-Thumbnail Image.png
Description
Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources

Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources for public health initiatives could yield increased effectiveness of influenza treatments. As it stands there is a lack of evolutionary data available for such use, particularly in the southwest. Our study focused on the sequencing and phylogeography of southwestern Influenza A samples from the Mayo Clinic. We fully sequenced two neuraminidase genes and combined them with archived sequence data from the Influenza Research Database. Using RAxML we identified the clade containing our sequences and performed a phylogeographic analysis using ZooPhy. The resultant data were analyzed using programs such as SPREAD and Tracer. Our results show that the southwest sequences emerged from California and the ancestral root of the clade came from New York. Our Bayesian maximum clade credibility (MCC) tree data and SPREAD analysis implicates California as a source of influenza variation in the United States. This study demonstrates that phylogeography is a viable tool to incorporate evolutionary data into existing forms of influenza surveillance.
ContributorsTurnock, Adam Ryan (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / Pycke, Benny (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
ContributorsMendoza, Daniel (Author) / Grando, Adela (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsMendoza, Daniel (Author) / Grando, Adela (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsMendoza, Daniel (Author) / Grando, Adela (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsMendoza, Daniel (Author) / Grando, Adela (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsMendoza, Daniel (Author) / Grando, Adela (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05