Matching Items (5)
156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
187792-Thumbnail Image.png
Description
In-person field education through exploration is fundamental in geoscience, but equal access is limited by time, cost, safety, distance, physical ability, and instructor variability. Technology advances allow students to explore pedagogically rich but inaccessible places through virtual field trips (VFTs). Studies show that VFTs result in significant learning gains and

In-person field education through exploration is fundamental in geoscience, but equal access is limited by time, cost, safety, distance, physical ability, and instructor variability. Technology advances allow students to explore pedagogically rich but inaccessible places through virtual field trips (VFTs). Studies show that VFTs result in significant learning gains and are an effective learning modality. Most research has focused on instructor-generated VFTs disseminated through a top-down model, whereas technological innovations are making user-generated VFTs more practical. This longitudinal, mixed-methods study decentralized the production of VFTs by teaching students and educators to build their own VFTs for place-based education via the proposed Virtual Field Trip Production Process for Place-Based Education. Students and educators produced seven place-based VFTs reviewed by subject-matter experts that are currently being used as digital learning experiences in high school and college settings. Place-based education (PBE) traditionally occurs in actual places, while VFTs convey an actual place virtually and can share the same learning objectives as their in-person counterparts. Sense of place, the combination of meanings and attachments an individual or group ascribes to a given place, is a measurable learning outcome of PBE with cognitive, affective, and behavioral components. Participants were administered the Positive and Negative Affect Schedule (PANAS), Place Attachment Inventory (PAI), and Young’s Place Meaning Survey (YPMS). Regression analysis showed statistically significant increases in positive affect (PA) and statistically significant decreases in negative affect (NA) as well as statistically significant gains in sense of place and content knowledge. In both geology and PBE, drawing is an important tool for learning, teaching, and assessing. Current VFT software environments do not allow users to digitally draw within the platform. This study examined differences in learning outcomes and final grades between students submitting mechanical versus digital drawings, geologic maps, and concept sketches. Regression analysis of the drawing, geologic map, and concept sketch exercises revealed no statistically significant differences between mechanical and digital drawing modalities in both learning outcomes and final grades. Geoscience educators can confidently allow students to submit digital drawings while software programmers and learning designers should consider adding this capability to their VFT platforms.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Reynolds, Steve (Committee member) / Johnson, Julia (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2023
Description
The Hassayampa River Canyon, located near Wickenburg, Arizona, is a riparian ecosystem and a popular recreational area in the arid Sonoran Desert of central Arizona. The canyon hosts well-exposed middle Cenozoic volcanic and sedimentary sequences, an underlying crystalline basement, and the unconformity that separates the two packages of rocks. The

The Hassayampa River Canyon, located near Wickenburg, Arizona, is a riparian ecosystem and a popular recreational area in the arid Sonoran Desert of central Arizona. The canyon hosts well-exposed middle Cenozoic volcanic and sedimentary sequences, an underlying crystalline basement, and the unconformity that separates the two packages of rocks. The crystalline basement includes Proterozoic metamorphic and granitic rocks, and a Cretaceous granodiorite intrusion. The area features extension-related normal faults, major associated tear faults, evidence for faulting during accumulation of the mid-Cenozoic sequence, and known mineral deposits, including those of manganese, gold, and copper. New geologic mapping provides the city of Wickenburg with scientific and societal information for future land-use and resource-management decisions, and improves the understanding of the geologic history of the region. New geologic mapping in the southern half of the Sam Powell Peak 7.5' Quadrangle highlights (1) mid-Cenozoic volcanism and extension that formed the main geologic features of the area, including Hassayampa River Canyon; (2) relationships between Neogene sedimentation and late Neogene basin-fill deposits, and (3) the development of the modern Hassayampa River system onto pre-existing bedrock topography. Geologic mapping was conducted under the joint State-Federal USGS National Cooperative Geologic Mapping program, and was jointly funded by the Arizona Geological Survey and USGS under EdMap award G18AC00230.
ContributorsBrown, Holly (Author) / Reynolds, Stephen (Thesis advisor) / Semken, Steve (Committee member) / Johnson, Julia (Committee member) / Arizona State University (Publisher)
Created2021
160654-Thumbnail Image.png
DescriptionOfficial program of the Mapping Grand Canyon Conference. Document was designed and optimized for digital dissemination and mobile device (smartphone, tablet) viewing and interactive browsing. Document was deliberately not printed in paper format with the intent of minimizing the event's ecological footprint through a reduction of paper and ink waste.
ContributorsWatson, Amy Carolyn (Compiler, Designer) / Toro, Matthew (Compiler, Cartographer) / Avila, Theresa (Contributor) / Field, Kenneth (Contributor) / Fry, Michael (Contributor) / Griffin, Dori (Contributor) / Kaplinski, Matt (Contributor) / Karlstrom, Karl (Contributor) / Manone, Mark (Contributor) / Oetting, Ed (Contributor) / Patterson, Tom (Contributor) / Quartaroli, Richard David (Contributor) / Runge, Peter (Contributor) / Semken, Steve (Contributor) / Smilovsky, Nikolas (Contributor) / Smith, Stephanie (Contributor) / Spindler, Rob (Contributor) / Trapido-Lurie, Barbara (Contributor) / Upchurch, Jonathan (Contributor) / Deitrick, Stephanie (Contributor) / Lemar, Shea (Contributor) / Messinger, Ellen Murray (Contributor) / Sherwood, Jill (Contributor) / Wilhelm, Karina (Contributor)
Created2019-02