Matching Items (26)
135368-Thumbnail Image.png
Description
In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these

In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these systems restrict or prevent the ability to deliver water. The reduced capacity to deliver water forces the health and well being of all citizens into jeopardy. The breakdown of a component can even spark the failure of several more components, causing a sequence of cascading failures with catastrophic consequences. To make matters worse, some forms of component failures are unpredictable and it is impossible to foresee every possible failure that could occur. In order to prevent cataclysmic losses that are experienced during system failures, the development of resilient water distribution infrastructure is vital. A resilient water distribution system possesses an adaptive capacity to mitigate the loss of service resulting from component failures. Traditionally, infrastructure resilience research has been retrospective in nature, analyzing the infrastructure system after it suffered a failure event. However, this research project takes water distribution resilience research in a new direction. The research identifies the Sensing Anticipating, Adaptation, and Learning processes that are inherent in the current operations of each component in the water distribution system (pumps, pipes, valves, tanks, nodes). Additional SAAL processes have been recommended for the components that lack adaptive management in current practice. This workis unique in that it applies resilience theory to water distribution systems in an anticipatory manner. This anticipatory application of resilience will provide operators with actionable process for them to implement during failure situations. In this setting, resilience is applied to existing systems for noticeable improvements in operation during failure situations.
ContributorsRodriguez, Jordan Robert (Author) / Seager, Thomas (Thesis director) / Eisenberg, Daniel (Committee member) / Bondank, Emily (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136721-Thumbnail Image.png
Description
While public transit systems are perceived to produce lower GHG emission intensities per passenger miles traveled (PMT) and per vehicle miles traveled (VMT), there is a limited understanding of emissions per PMT/VMT across cities, or of how emissions may change across modes (light, metro, commuter, and bus) and time (e.g.,

While public transit systems are perceived to produce lower GHG emission intensities per passenger miles traveled (PMT) and per vehicle miles traveled (VMT), there is a limited understanding of emissions per PMT/VMT across cities, or of how emissions may change across modes (light, metro, commuter, and bus) and time (e.g., with changing electricity mixes in the future). In order to better understand the GHG emissions intensity of public transit systems, a comparative emissions assessment was developed utilizing the National Transit Database (NTD) which reports energy use from 1997 to 2012 of rail and bus systems across the US. By determining the GHG emission intensities (per VMT or per PMT) for each mode of transit across multiple years, the modes of transit can be better compared between one another. This comparison can help inform future goals to reduce GHG emissions as well as target reductions from the mode of transit that has the highest emissions. The proposed analysis of the NTD and comparison of modal emission intensities will be used to develop future forecasting that can guide public transit systems towards a sustainable future.
ContributorsCano, Alex (Author) / Chester, Mikhail (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
136692-Thumbnail Image.png
Description
One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only

One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only by drastic, government-mandated social reforms, while Ostrom's empirical work demonstrates that community-scale collaboration can circumvent tragedy without any elaborate outside intervention. Though more optimistic, Ostrom's work provides scant insight into larger-scale dilemmas such as climate change. Consequently, it remains unclear if the sustainable management of global resources is possible without significant government mediation. To investigate, we conducted two game theoretic experiments that challenged students in different countries to collaborate digitally and manage a hypothetical common resource. One experiment involved students attending Arizona State University and the Rochester Institute of Technology in the US and Mountains of the Moon University in Uganda, while the other included students at Arizona State and the Management Development Institute in India. In both experiments, students were randomly assigned to one of three production roles: Luxury, Intermediate, and Subsistence. Students then made individual decisions about how many units of goods they wished to produce up to a set maximum per production class. Luxury players gain the most profit (i.e. grade points) per unit produced, but they also emit the most externalities, or social costs, which directly subtract from the profit of everybody else in the game; Intermediate players produce a medium amount of profit and externalities per unit, and Subsistence players produce a low amount of profit and externalities per unit. Variables influencing and/or inhibiting collaboration were studied using pre- and post-game surveys. This research sought to answer three questions: 1) Are international groups capable of self-organizing in a way that promotes sustainable resource management?, 2) What are the key factors that inhibit or foster collective action among international groups?, and 3) How well do Hardin's theories and Ostrom's empirical models predict the observed behavior of students in the game? The results of gameplay suggest that international cooperation is possible, though likely sub-optimal. Statistical analysis of survey data revealed that heterogeneity and levels of trust significantly influenced game behavior. Specific traits of heterogeneity among students found to be significant were income, education, assigned production role, number of people in one's household, college class, college major, and military service. Additionally, it was found that Ostrom's collective action framework was a better predictor of game outcome than Hardin's theories. Overall, this research lends credence to the plausibility of international cooperation in tragedy of the commons scenarios such as climate change, though much work remains to be done.
ContributorsStanton, Albert Grayson (Author) / Clark, Susan Spierre (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
137551-Thumbnail Image.png
Description
Team dynamics: a system of behaviors and psychological processes occurring within a social group (wiki). This definition classifies it as pertaining to a social group, so how do team dynamics vary from one specific social group to another? Social groups are created for many different reasons, some inherent (such as

Team dynamics: a system of behaviors and psychological processes occurring within a social group (wiki). This definition classifies it as pertaining to a social group, so how do team dynamics vary from one specific social group to another? Social groups are created for many different reasons, some inherent (such as families) and some created intentionally with knowledge of what is being done (such as athletic teams, class project groups, and groups in the workforce). The way these groups interact and work as a team shapes how efficient they can work and how well they are able to achieve set goals. Therefore, in order to predict how well a particular group or team might perform in a routine project, it is useful to analyze the way they work together on a regular basis. Certain aspects of different groups, such as gender, age, level of competition, and type of activity, cause them to work together in different manners. Do any of these factors cause a particular group to work better as a team? Or do they just cause them to work differently?
ContributorsDunn, Travis Griffin (Author) / Lawrence, Christopher (Thesis director) / Seager, Thomas (Committee member) / Weaver, Edwin (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
134380-Thumbnail Image.png
Description
The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG

The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG cells and TEG setups were tested and analyzed, proof-of-concepts and prototypes were built. and the performance of the proof-of-concepts and prototypes were tested and analyzed as well. In order to test different TEG cells and TEG setups, a TEG testing apparatus was designed and fabricated. The apparatus is capable of comparing the performance of TEGs with temperature differentials up to 200 degrees C. Along with a TEG testing apparatus, several proof-of-concepts and prototypes were completed. All of these were tested in order to determine the feasibility of the design. All three proof-of-concepts were only capable of producing a voltage output less than 300mV. The prototype, however, was capable of producing a max output voltage of 17 volts. Although the prototype outperformed all of the proof-of-concepts, optimizations to the design can continue to improve the output voltage. In order to do so, stacked TEG tests were performed. After performing the stacked TEG tests, it was determined that the use of stacked TEGs depended on the Fresnel lens chosen. If BISTEG were to use a point focused Fresnel lens, using a stack of TEGs could increase the power density. If BISTEG were to utilize a linear focused Fresnel lens, however, the TEGs should not be stacked. It would be more efficient to lay them out side by side. They can be stacked, however, if the energy density needs to be increased and the costs of the additional TEGs are not an issue.
ContributorsPark, Andrew (Author) / Seager, Thomas (Thesis director) / Margaret, Hinrichs (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134474-Thumbnail Image.png
Description
The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the

The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the only alternative for some manufactures because there is no viable option for silicon wafers. Solar panel installations started to peak in the early 1990's . With the lifespan of a solar panel being 25 years, recycling these panel is not a priority task in government policies. First Solar is currently the only company in the United States that executes the full recycling process. However, there is an environmental hotspot and an energy intensity phase identified in their process. The second stage in First Solar's recycling method consist of hammering and shredding the solar panel to reduce the surface area to then move on the chemical path stage. This stage currently uses 1.1 kWh for a meter by meter solar cell. A thermal processing method was explored and found to be the most environmentally conscious chose in terms of emissions and energy cost. The thermal method uses a conventional furnace to burn away the EVA, leaving the internal components of the cell intact and ready for the remaining process of recycling. SLICE method aims to introduce an industry tailored, low energy cost process, that initiates a solar panel recycling infrastructure in the United States. The recycling infrastructure is needed to sustain the exponential growth of solar panels and avoid third party recycling to developing countries. This new method transitions from lab tested batch processes to a continuous process.
ContributorsMartinez, Mariana (Co-author) / Grayson, Madison (Co-author) / Seager, Thomas (Thesis director) / Ravikumar, Dwarak (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135011-Thumbnail Image.png
Description
The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and dissention began to show in laws and propositions voters passed.

The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and dissention began to show in laws and propositions voters passed. In California, Proposition 13 was one of many anti-tax laws taxpayers voted for to cut back the control of the government. As a result, revenues for public services and improvements decreased and maintenance allocations for infrastructure systems were considerably reduced. Fast-forwarding to today, infrastructure systems in the U.S. are reaching their retirement period and are requiring extreme maintenance and attention. Los Angeles has been experiencing severe water main breaks in its water distribution system for several years now, but the city is lacking funds to replace the aging pipes. The lack of funds paired with aging infrastructure indicates there is a flaw in the forecasting analysis techniques used today to project infrastructure costs. Therefore, an alternative discounting function to the exponential is proposed: the hyperbolic discounting function. A comparative analysis was performed using a hyperbolic and an exponential discounting function. The two functions were calibrated over the course of 50 years and the parameters r and a were determined. Then the discounts were applied to a 50-year expenditure projection for pipe replacements of a water distribution system. The present value was computed with each discount function and results were obtained. By year 50, the hyperbolic function yielded a higher present value of $25.06 million and the exponential function yielded a present value of $14 million. These results lead to the conclusion that the hyperbolic discounting function is the preferred methodology when calculating long-term expenditures, especially those dependent on tax revenue.
ContributorsSawyer, Madeline Elizabeth (Author) / Seager, Thomas (Thesis director) / Clark, Susan (Committee member) / McBurnett, Lauren (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154300-Thumbnail Image.png
Description
Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D)

Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA – building on the theory of anticipatory governance – as a series of methodological improvements that seek to align LCA practices with the objectives of RRI.

Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement.

Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions.
ContributorsWender, Ben A. (Author) / Seager, Thomas (Thesis advisor) / Guston, David (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2016
154638-Thumbnail Image.png
Description
Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in the National Society of Professional Engineers code of ethics states

Engineering ethics is preoccupied with technical failure. To ameliorate the risk that engineering works might either blow up or fall down, the engineering code of ethics provides guidance of how engineers should conduct themselves. For example, the Fundamental Canons in the National Society of Professional Engineers code of ethics states that engineers should hold paramount the health, safety and welfare of the public. As a result, engineering designs meet basic human needs such as food, water and shelter -- at risks that are generally considered acceptable. However, even safe designs fail to meet our needs ranked higher in Maslow's hierarchy -- such as belonging, esteem and self-actualization. While these have historically not been ethical priorities, increasing expectations in developed countries now include more complex ethical concepts such as sustainability and social justice. We can expect these trends toward higher and more complex human needs to continue -- although the profession seems ill-prepared. We argue that an empathic approach to engineering design is necessary to meet these higher needs of developed and developing societies. To guide engineers towards this approach, we propose a pluralistic interpretation of empathy grounded in an understanding of the three parts of the mind: cognitive, affective, and conative. In fact, product designers already use empathy in their design processes. However, an exemplar of an empathic design is harder to find in civil engineering disciplines. This paper discusses an example of the Hoover Dam Bypass, which resulted in an award-winning design and construction that improved traffic flow, reduced vulnerability to terrorist attack, and accounted for historical factors and environmental impacts. However, this technical success is an empathic failure. Although project leaders commissioned ethnographic studies to understand the impact the bridge would have on the local Native American populations and their cultural sites, the eventual design showed little consideration of the concerns that were revealed. For engineering designs such as bridges, other infrastructure and systems to meet the needs of the various populations in which they serve, engineers need to incorporate empathy into their designs.
ContributorsVortherms, Kaitlin (Author) / Seager, Thomas (Thesis advisor) / Tracy, Sarah (Committee member) / Spierre/Clark, Susan (Committee member) / Arizona State University (Publisher)
Created2016
154911-Thumbnail Image.png
Description
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County,

In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to increase both morbidity and mortality and rising temperatures represent a threat to public health. As a result there has been a significant amount of research into understanding existing socio-economic vulnerabilities to extreme heat which has identified population subgroups at greater risk of adverse health outcomes. Additionally, research has shown that man-made infrastructure can mitigate or exacerbate these health risks. However, while recent socio-economic heat vulnerability research has developed geospatially explicit results, research which links it directly with infrastructure characteristics is limited. Understanding how socio-economic vulnerabilities interact with infrastructure systems is a critical component to developing climate adaptation policies and programs which efficiently and effectively mitigate health risks associated with rising temperatures.

The availability of cooled space, whether public or private, has been shown to greatly reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of which households have access to this infrastructure results in an incomplete understanding of the health risks associated with heat. This knowledge gap could result in the misallocation of resources intended to mitigate negative health impacts associated with heat exposure. Additionally, when discussing accessibility to public cooled space there are underlying questions of mobility and mode choice. In addition to captive riders, a growing emphasis on walking, biking and public transit will likely expose additional choice riders to extreme temperatures and compound existing vulnerabilities to heat.
ContributorsFraser, Andrew Michael (Author) / Chester, Mikhail (Thesis advisor) / Seager, Thomas (Committee member) / Zhou, Xuesong (Committee member) / Kuby, Michael (Committee member) / Arizona State University (Publisher)
Created2016