Matching Items (452)
Filtering by

Clear all filters

131239-Thumbnail Image.png
Description
Studies have demonstrated that telomere length is influenced by a person’s perception of stressors and other studies suggest that interparental conflict is a stressor for children. The current study sought to determine if child perception of interparental conflict is a better predictor of telomere length than parent perception of interparental

Studies have demonstrated that telomere length is influenced by a person’s perception of stressors and other studies suggest that interparental conflict is a stressor for children. The current study sought to determine if child perception of interparental conflict is a better predictor of telomere length than parent perception of interparental conflict. This study also sought to determine whether behavior problems are the medium for how child perception of conflict influences telomere length. Using multiple regression analyses between reports of interparental conflict, reports of child behavior problems, and child telomere length ratios, it was determined that child report of conflict was a better predictor of behavior problems and telomere length. Child report of behavior problems was the medium whereby child report of conflict predicted telomere length. While these results were not significant, it does provide the first evidence that child perception of interparental conflict influences telomere length more than parental report of interparental conflict. This suggests that intervention programs designed to reduce conflict between parents should include a method for helping children process their feelings about of interparental conflict to preserve telomere length.
ContributorsFuller, Austin David (Author) / Lindstrom-Johnson, Sarah (Thesis director) / Elam, Kit (Committee member) / Ruof, Ariana (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131487-Thumbnail Image.png
Description
The purpose of this study is to examine the baseline level of structural competency present in the general public and determine whether or not an individual’s demographics meaningfully affect this knowledge. This aim was accomplished by analyzing observational data from a citizen social science (CSS) project. Undergraduate students enrolled in

The purpose of this study is to examine the baseline level of structural competency present in the general public and determine whether or not an individual’s demographics meaningfully affect this knowledge. This aim was accomplished by analyzing observational data from a citizen social science (CSS) project. Undergraduate students enrolled in the “Urban and Environmental Health” course described in Ruth et al. (2020) trained and recruited 165 CSS to record observations of fixed exclusions of women, minorities/Latinx, and large bodied people in the built environment. Participants walked along nine distinct transects in downtown Tempe, Arizona and recorded their observations. Of the 165 initial participants, 134 satisfactorily completed the task and were included in the statistical analysis. The observations of each CSS were scored against a gold standard, yielding a percent of observations observed for each exclusion category. Statistical analysis using Aligned Rank Transform (ART) Factorial ANOVA and Mann-Whitney U Tests were then employed to test for differences in the number of observations across demographic categories and subcategories. Among the main demographic factors, ethnicity produced a statistically significant difference in observations, but only for gendered exclusions. For the demographic subcategories, the only significant difference was observed in men, where ethnicity and body size both showed an effect on observations of women and ethnicity respectively. Due to the large similarity in observations across demographic categories, any interventions aimed at increasing the structural competency of a population need not target specific groups, but rather the population as a whole.
ContributorsMcguire, Collin James (Author) / Ruth, Alissa (Thesis director) / SturtzSreetharan, Cindi (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131179-Thumbnail Image.png
Description
Impairments to mitochondrial function and metabolism can make neurons vulnerable to stress and degeneration. Several studies have shown that aberrations in the electron transport chain (ETC) and the Krebs cycle are involved in the pathogenesis of Parkinson’s disease (PD). Therefore, targeting these pathways is becoming increasingly important in the discovery

Impairments to mitochondrial function and metabolism can make neurons vulnerable to stress and degeneration. Several studies have shown that aberrations in the electron transport chain (ETC) and the Krebs cycle are involved in the pathogenesis of Parkinson’s disease (PD). Therefore, targeting these pathways is becoming increasingly important in the discovery of new treatment for neurodegenerative diseases like PD. (−)-epigallocatechin-3-gallate (EGCG), the most common polyphenol found in Green tea, has been shown to exert neuroprotective effects and lower the risk of developing PD. However, the mechanism by which it accomplishes this remains to be elucidated. The purpose of this study was to shed light on these mechanisms by exploring the effects of EGCG against MPP+-induced mitochondrial dysfunction with PC12 cells being used as a PD pathological cell model. The cell viability differences between cells treated with varying combinations of MPP+ and EGCG were measured using a CCK-8 assay. The morphology changes induced by the different treatments were then identified with fluorescence microscopy. Next, a Seahorse assay was carried out to investigate mitochondrial function followed by GC-MS and LC-MS analysis to evaluate mitochondrial metabolism. 13C metabolic flux analysis was then used to trace the metabolic flux of the Krebs cycle. The results of the CCK-8 assay and fluorescence microscopy showed that EGCG helps attenuate the decreased viability of PC12 cells as well as the morphology changes induced by MPP+. The Seahorse and GC-MS assay found that the it also helps prevent impaired mitochondrial respiration caused by MPP+. The impaired mitochondrial respiration manifested as alterations to the Krebs cycle and glycolysis. In addition, 13C metabolic flux analysis revealed significant increases in Krebs cycle activity in MPP+-induced PC12 cells if treated with EGCG beforehand. Moreover, LC-MS showed a distinct metabolite profile for each group and identified 26 potent biomarkers. In conclusion, this study demonstrated that EGCG exerts a neuroprotective effect on PC12 cells and helps maintain mitochondrial metabolic balance in the presence of MPP+.
ContributorsLawrence, Kent Alexander (Author) / Gu, Haiwei (Thesis director) / Lake, Douglas (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131187-Thumbnail Image.png
Description
In 2017 alone, over 250,00 patients died due to medical errors and is the 3rd leading cause of death in America. These errors attributed to incorrect diagnosis and treatment of illnesses can be preventable. The solution to this major issue is the creation of an app called HealthKeep. Primary market

In 2017 alone, over 250,00 patients died due to medical errors and is the 3rd leading cause of death in America. These errors attributed to incorrect diagnosis and treatment of illnesses can be preventable. The solution to this major issue is the creation of an app called HealthKeep. Primary market research done during the first semester of the study included the creation of a school-wide survey across all ASU campuses that consisted of key questions for people of all ages in regards to their healthcare. These questions include how often patients of specific age ranges visit the doctor, their overall experience during appointments, and their attitudes towards the creation of a mobile health application that would be able to tabulate all your medical information neatly and securely. The overwhelming response stated that patient’s from all ranges would be open to the idea of having such an application. Further development included the creation of a business plan and application storyboard used when interviewing potential customers about the application. All of these tools aided in the first entry for Venture Devils in the first semester leading to the disappointing failure of winning funding. However, the feedback on the website created, executive summary, expanded pitch deck, and market research aided in the successful key revisions of the venture during this second semester and has resulted in placement in the final round of Pitch Playoffs where funding can be awarded.
ContributorsSiraj, Salim (Co-author) / Undrill, Grayson (Co-author) / Ott, Madison (Co-author) / Smith, Keaton (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131199-Thumbnail Image.png
Description
The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory

The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory bacterium were inactivated at seasonally low temperatures, rendering them non-viable when introduced to M. vaginatus at room temperature. However, I found that the predatory bacterium became only transiently inactive at low temperatures, recovering its pathogenicity when later exposed to warmer temperatures. By contrast, inactivation of infectivity was complete by exposure in both liquid and dry conditions for five days at 40 °C. I also expected that its infectivity towards M. vaginatus was temperature dependent. Indeed, infection was hampered and did not cause high mortality when predator and prey were incubated at or below 10 °C, which could have been due to slowed metabolisms of M. vaginatus or to an inability of the predatory bacterium to attack in cold conditions. Above 10 °C, when M. vaginatus grew faster, time to full death of predator/prey incubations correlated with the rate of growth of healthy cultures.
The experiments in this study observed a correlation between the growth rate of uninfected cultures and the decay rate of infected cultures, meaning that temperatures that cultures that displayed a higher growth rate for uninfected M. vaginatus would die faster when infected with the predatory bacterium. Infected cultures that were incubated at temperatures 4 and 10 °C did not display death and this could have been due to lower activity of M. vaginatus at lower temperatures or the inability for the predatory bacterium to attack at lower temperatures.
ContributorsAhamed, Anisa Nour (Author) / Garcia-Pichel, Ferran (Thesis director) / Giraldo Silva, Ana Maria (Committee member) / Bethany Rakes, Julie (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132756-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
ContributorsDavis, Vanessa Brooke (Co-author) / Bucklin, Lindsay (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132765-Thumbnail Image.png
Description
Recently, we have demonstrated that a novel RNA origami (RNA-OG) nanostructure functions as a TLR3 agonist both in vitro and in vivo. This RNA nanostructure could induce effective antitumor immunity in a CT26-OVA-iRFP tumor model that expresses both ovalbumin (OVA) and near infrared protein (iRFP), rendering a significant delay in

Recently, we have demonstrated that a novel RNA origami (RNA-OG) nanostructure functions as a TLR3 agonist both in vitro and in vivo. This RNA nanostructure could induce effective antitumor immunity in a CT26-OVA-iRFP tumor model that expresses both ovalbumin (OVA) and near infrared protein (iRFP), rendering a significant delay in tumor growth or complete tumor-regression. However, in a similar tumor line that expresses iRFP but not OVA, i.e. a CT26-Neo-iRFP model, RNA-OG induced responses that were consistently inferior to those observed in CT26-OVA-iRFP. Interestingly, the antitumor immunity initially generated against CT26-OVA-iRFP was found to render the mice immune to a challenge with the more malignant CT26-Neo-iRFP line. In addition to OVA expression, the two cell lines also showed different levels of MHC-I. Ongoing research has been focused on deciphering the molecular nature of the different responses. Then, we can search for strategies that increase the tumor immunogenicity, and therefore improve the therapeutic efficacy of RNA-OG for inducing long-term tumor-regression.
ContributorsMatiski, Lawrence Theodore Mazzei (Author) / Chang, Yung (Thesis director) / Yan, Hao (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132775-Thumbnail Image.png
Description
In the ordering game on a graph G, Alice and Bob take turns placing the vertices of G into a linear ordering. The score of the game is the maximum number of neighbors that any vertex has before it in the ordering. Alice's goal in the ordering game is to

In the ordering game on a graph G, Alice and Bob take turns placing the vertices of G into a linear ordering. The score of the game is the maximum number of neighbors that any vertex has before it in the ordering. Alice's goal in the ordering game is to minimize the score, while Bob's goal is to maximize it. The game coloring number is the least score that Alice can always guarantee in the ordering game, no matter how Bob plays. This paper examines what happens to the game coloring number if Alice or Bob skip turns on the ordering game. Preliminary definitions and examples are provided to give context to the ordering game. These include a polynomial time algorithm to compute the coloring number, a non-competitive version of the game coloring number. The notion of the preordered game is introduced as the primary tool of the paper, along with its naturally defined preordered game coloring number. To emphasize the complex relationship between the coloring number and the preordered game coloring number, a non-polynomial time strategy is given to Alice and Bob that yields the preordered game coloring number on any graph. Additionally, the preordered game coloring number is shown to be monotonic, one of the most useful properties for turn-skipping. Techniques developed throughout the paper are then used to determine that Alice cannot reduce the score and Bob cannot improve the score by skipping any number of their respective turns. This paper can hopefully be used as a stepping stone towards bounding the score on graphs when vertices are removed, as well as in deciphering further properties of the asymmetric marking game.
ContributorsGuglielmo, Jason A (Author) / Kierstead, Henry (Thesis director) / Czygrinow, Andrzej (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132779-Thumbnail Image.png
Description
The national parks are often considered to be one of America’s greatest achievements. Through a rich and sometimes tumultuous history, the national parks have been shaped from unwanted swaths of land into some of the most famous landscapes in the country. There are ultimately two conflicting goals of the national

The national parks are often considered to be one of America’s greatest achievements. Through a rich and sometimes tumultuous history, the national parks have been shaped from unwanted swaths of land into some of the most famous landscapes in the country. There are ultimately two conflicting goals of the national parks: provide enjoyment for the American people and protect the land. In recent years, increased popularity of the parks has made achieving these dual goals particularly difficult. Crowding in the parks leads to both ecological and social problems that threaten both goals of the national parks. Crowding is a multifaceted issue that must be explored from multiple perspectives.

Using Zion as a case study, the problems of crowding are explored and evaluated. First the history of the national parks is described to determine how the parks were created and popularized. After exploring the history of the parks, crowding in the national parks will be
discussed, including an overview of some of the significant social science literature exploring
crowding and its impact on visitor experience. This analysis will conclude with an examination
of visitor management strategies and an examination of the park-specific literature about the specific problems and decisions confronting managers at Zion National Park. A personal account of a visit to Zion during the peak season will provide a personal narrative about the meaning and purpose of the park experience.

The final section of this thesis will consider a range of opposing views on the philosophy of national parks and the park experience, centering around the ideas of Abbey, to address the deeper questions surrounding the goals of park management as we likely more toward an even more crowded park future. Ultimately the paper concludes that the parks has shifted irrevocably away from the ideals of Abbey, although his voice still provides inspiration to generations of park lovers. Additionally, while hard limits must eventually be set, in an era of increasing human influence, the park experience will need to be redefined to be more expansive and inclusive of all who wish to visit and enjoy.
ContributorsKevershan, Kimberly Robin (Author) / Minteer, Ben (Thesis director) / Budruk, Megha (Committee member) / Govani, Michelle Sullivan (Committee member) / School of Molecular Sciences (Contributor) / Environmental and Resource Management (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132592-Thumbnail Image.png
Description
In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point inhibitors (CPI), significantly slowed tumor growth, reduced pulmonary metastasis and increased the cell-mediated immune response. In terms of tumor volumes, the mPC FAST vaccine was comparable to the untreated controls. However, a significant difference in tumor volume did emerge when the mPC vaccine was used with CPI. The collective data indicated that the immune checkpoint blockade therapy was only beneficial with suboptimal neoantigens. More importantly, the FAST vaccine, though requiring notably less resources, performed similarly to the personalized version of the frameshift breast cancer vaccine in the same mouse model. Furthermore, because the frameshift peptide (FSP) array provided a strong rationale for a focused vaccine, the FAST vaccine can theoretically be expanded and translated to any human cancer type. Overall, the FAST vaccine is a promising treatment that would provide the most benefit to patients while eliminating most of the challenges associated with current personal cancer vaccines.
ContributorsMurphy, Sierra Nicole (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05