Matching Items (1,582)
Filtering by

Clear all filters

151433-Thumbnail Image.png
Description
Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1).

Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1). I first developed a simplified technique to incorporate iron oxides in apoferritin to form "magnetoferritin" for nM-level detection with T2- and T2* weighting. I then explored whether the crystal could be chemically modified to form a particle with high r1. I first adsorbed Mn2+ ions to metal binding sites in the apoferritin pores. The strategic placement of metal ions near sites of water exchange and within the crystal oxide enhance r1, suggesting a mechanism for increasing relaxivity in porous nanoparticle agents. However, the Mn2+ addition was only possible when the particle was simultaneously filled with an iron oxide, resulting in a particle with a high r1 but also a high r2 and making them undetectable with conventional T1-weighting techniques. To solve this problem and decrease the particle r2 for more sensitive detection, I chemically doped the nanoparticles with tungsten to form a disordered W-Fe oxide composite in the apoferritin core. This configuration formed a particle with a r1 of 4,870mM-1s-1 and r2 of 9,076mM-1s-1. These relaxivities allowed the detection of concentrations ranging from 20nM - 400nM in vivo, both passively injected and targeted to the kidney glomerulus. I further developed an MRI acquisition technique to distinguish particles based on r2/r1, and show that three nanoparticles of similar size can be distinguished in vitro and in vivo with MRI. This work forms the basis for a new, highly flexible inorganic approach to design nanoparticle contrast agents for molecular MRI.
ContributorsClavijo Jordan, Maria Veronica (Author) / Bennett, Kevin M (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sherry, A Dean (Committee member) / Wang, Xiao (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2012
152384-Thumbnail Image.png
Description
Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general.

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.
ContributorsJeon, Kiwan (Author) / Seo, Dong-Kyun (Thesis advisor) / Jones, Anne K (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2013
153946-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
ContributorsMorgan, Ashli M (Author) / Wang, Xu (Thesis advisor) / Allen, James (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131526-Thumbnail Image.png
Description
Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes

Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes in normal disturbance patterns, such as changes in precipitation, and from human impact. Due to their increased sensitivity to environmental changes, it has become more important to protect and monitor aquatic and riparian communities in arid regions as climate change continues to intensify. Therefore, the diversity and richness of macroinvertebrate FFGs before and after monsoon and winter storm seasons were analyzed to determine the effect of flow-related disturbances. Ecosystem size was also considered, as watershed area has been shown to affect macroinvertebrate diversity. There was no strong support for flow-related disturbance or ecosystem size on macroinvertebrate diversity and richness. This may indicate a need to explore other parameters of macroinvertebrate community assembly. Establishing how disturbance affects aquatic macroinvertebrate communities will provide a key understanding as to what the stream communities will look like in the future, as anthropogenic impacts continue to affect more vulnerable ecosystems.
ContributorsSainz, Ruby (Author) / Sabo, John (Thesis director) / Grimm, Nancy (Committee member) / Lupoli, Christina (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131531-Thumbnail Image.png
Description
This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently

This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently engage in CAM, given that their parents also engage in CAM. The top reasons respondents indicated continued engagement in CAM was that it has no side effects and is preventative. Reasons for not practicing CAM included feeling out of place, not living with parents or not believing in CAM. After immigration, most participants decreased or stopped their engagement in CAM. More women than men continued to practice CAM after immigration. From the results, it was concluded that CAM is still important to 1.5 generation Indian immigrants.
ContributorsMurugesh, Subhiksha (Author) / Stotts, Rhian (Thesis director) / Mubayi, Anuj (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131533-Thumbnail Image.png
Description
Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in

Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in this thesis is modification of bases—more specifically, methylation of Adenine (m6A) within the GATC motif of Escherichia coli. These methylated adenines are especially important in a process called methyl-directed mismatch repair (MMR), a pathway responsible for repairing errors in the DNA sequence produced by replication. In this pathway, methylated adenines identify the parent strand and direct the repair proteins to correct the erroneous base in the daughter strand. While the primary role of methylated adenines at GATC sites is to direct the MMR pathway, this methylation has also been found to affect other processes, such as gene expression, the activity of transposable elements, and the timing of DNA replication. However, in the absence of MMR, the ability of these other processes to maintain adenine methylation and its targets is unknown.
To determine if the disruption of the MMR pathway results in the reduced conservation of methylated adenines as well as an increased tolerance for mutations that result in the loss or gain of new GATC sites, we surveyed individual clones isolated from experimentally evolving wild-type and MMR-deficient (mutL- ;conferring an 150x increase in mutation rate) populations of E. coli with whole-genome sequencing. Initial analysis revealed a lack of mutations affecting methylation sites (GATC tetranucleotides) in wild-type clones. However, the inherent low mutation rates conferred by the wild-type background render this result inconclusive, due to a lack of statistical power, and reveal a need for a more direct measure of changes in methylation status. Thus as a first step to comparative methylomics, we benchmarked four different methylation-calling pipelines on three biological replicates of the wildtype progenitor strain for our evolved populations.
While it is understood that these methylated sites play a role in the MMR pathway, it is not fully understood the full extent of their effect on the genome. Thus the goal of this thesis was to better understand the forces which maintain the genome, specifically concerning m6A within the GATC motif.
ContributorsBoyer, Gwyneth (Author) / Lynch, Michael (Thesis director) / Behringer, Megan (Committee member) / Geiler-Samerotte, Kerry (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05