Matching Items (97)

132642-Thumbnail Image.png

Determining the effectiveness of the water conservation implementations within the City of Tempe's neighborhood grant program

Description

Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research

Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations, have common landscapes they are responsible for up-keeping and irrigating. 208 neighborhood communities exist within the City of Tempe. Each year the city provides $30,000 in grant funding to these 208 neighborhoods to implement water conservation projects. This thesis focuses on ten neighborhoods who had applied and were granted funding to implement a conservation project between the years 2011 and 2016. My findings showed that this program has not been effective in reducing water consumption, wither due to the lack of implementation or the small-scale of the projects. From my research and synthesis, I suggest a layer of accountability be added to the program to ensure projects are effective and participants are implementing their projects and that the program is effective overall. This study provides the City of Tempe with relevant and viable information to aid management of water consumption and conservation within neighborhoods.

Contributors

Agent

Created

Date Created
  • 2019-05

132343-Thumbnail Image.png

Shock Effects and Mineral Assemblages in the Genomict Eucrite Northwest Africa 8677

Description

Shock effects in meteorites provide important insights into impacts on their parent bodies. Eucrites are among the Howardite-Eucrite-Diogenite (HED) class of achondrites that likely originate from the intact, differentiated asteroid

Shock effects in meteorites provide important insights into impacts on their parent bodies. Eucrites are among the Howardite-Eucrite-Diogenite (HED) class of achondrites that likely originate from the intact, differentiated asteroid Vesta. Brecciated eucrites provide a record of the impact processes that occurred after the crustal formation of the parent body. Radiometric dating of HEDs has shown that they were affected by resetting events at 3.4 – 4.1 and 4.48 Ga. Therefore, shock effects in HEDs are windows into ancient impacts on asteroids early in solar system history. Northwest Africa (NWA) 8677 is a genomict eucrite with lithologies that are texturally different, but compositionally similar. The clasts in the breccia include strongly shocked (S5) gabbroic fragments and weakly shocked (S3) basaltic clasts. Coesite, a high-pressure polymorph of quartz, is preserved in the core of a large (~250 μm) silica grain, indicating the gabbro was strongly shocked. A large thermal overprint from the surrounding melt resulted in the transformation of coesite to low-pressure silica phases of quartz and cristobalite on the rims of this grain. The shock melt, interstitial to the breccia fragments, exhibits well-developed quench textures and contains a low-pressure mineral assemblage of plagioclase and pyroxene, implying that crystallization occurred after pressure release. The heterogeneity in shock features between the gabbroic and basaltic lithologies suggests that NWA 8677 experienced a variable impact history, which included at least two impact events. An initial impact strongly shocked and brecciated the gabbro and ejected both onto the regolith of the parent body where a more weakly shocked basalt was incorporated. A second impact produced the interstitial melt between the breccia matrix. The temperature of this shock melt remained high after pressure release, resulting in crystallization of a low-pressure assemblage of pyroxene and feldspar, as well as the transformation of quartz + cristobalite rims on coesite

Contributors

Agent

Created

Date Created
  • 2019-05

132747-Thumbnail Image.png

Characterizing Diurnal Density and Temperature Variations in the Martian Atmosphere Using Data/Model Comparisons

Description

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8.

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.

Contributors

Created

Date Created
  • 2019-05

Look Up LP

Description

"Look Up" is a full length hip hop concept album that follows a day in the life of protagonist Ozy Mandias, except with a science fiction twist. He has been

"Look Up" is a full length hip hop concept album that follows a day in the life of protagonist Ozy Mandias, except with a science fiction twist. He has been abducted by an alien who is going through his memories. The project includes a full length script and lyric companion as well as a package mood visuals to go along with the album.

Contributors

Agent

Created

Date Created
  • 2018-05

136239-Thumbnail Image.png

Analysis of Resident Satisfaction with Services Provided by the University Technology Office

Description

In an effort to gauge on-campus resident's satisfaction with services provided by Century Link and the University Technology Office as well as understand the resident's technology usage habits, the Performance

In an effort to gauge on-campus resident's satisfaction with services provided by Century Link and the University Technology Office as well as understand the resident's technology usage habits, the Performance Based Research Studies Group at ASU conducted a survey to collect the data needed to initiate improvements. Unlike previous years, the 2015 edition of the survey was distributed more efficiently by engaging University Housing staff members (those who work closest with the residents). The result was a 288% increase in responses from the previous year, totaling 2352 respondents and a 167% increase in the number of Residential Halls surveyed, totaling 24. As a primary concern, on a scale of zero to five, the average Internet satisfaction rating was 2.42. In the comments section residents reported issues with the reliability and speed of the ASU networks. It was further determined that residents were dissatisfied with the television services with an average satisfaction rating of 2.91; and the vast majority of comments regarding television services demanding that the ESPN channels be provided. In addition to the metrics on resident satisfaction, it was found that the majority of on-campus residents do not utilize hard-wired ports. Based on the information gathered from this survey, it is recommended that the University Technology Office: 1) focus efforts on upgrading, expanding, and improving the existing ASU networks in particular the reliability and speed of those networks, 2) invest in a broader channel line-up to at minimum provide the ESPN channels, and 3) start an awareness campaign to educate residents on the usage of hard wired ports with the goal of increasing hard wired port usage. As a corollary to information gathered from the survey, it is possible to begin building technology usage profiles on each building and even building such profiles on each residential college and academic unit to better understand the clientele and adapt the services a necessary.

Contributors

Created

Date Created
  • 2015-05

136390-Thumbnail Image.png

Modeling the mantle genesis of basalts from the Lassen Volcanic Center

Description

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order to determine the pressure, temperature, source composition, and method of melting that lead to the production of melt in the mantle below Lassen. To this aim, a suite of primitive basalts (i.e. SiO2<52 and Mg#>65) are corrected for fractional crystallization by adding minerals back to the bulk rock composition with the goal of returning them to a primary composition in equilibrium with the mantle. Thermobarometry of the primary melt compositions is conducted to determine temperature and pressure of melting, in addition to a forward mantle modeling technique to simulate mantle melting at varying pressures to constrain source composition and method of melting (batch vs. fractional). The results from the two techniques agree on an average depth of melt extraction of 36 km and a source composition similar to that of depleted mantle melted by batch melting. Although attempted for both calc-alkaline and tholeiitic basalts, the fractional crystallization correction and thus the pressure-temperature calculations were only successful for tholeiitic basalts due to the hydrous nature of the calc-alkaline samples. This leaves an opportunity to repeat this study with parameters appropriate for hydrous basalts, allowing for the comparison of calc-alkaline and tholeiitic melting conditions.

Contributors

Agent

Created

Date Created
  • 2015-05

136697-Thumbnail Image.png

PHXmuraltour: Exploring the Downtown Street Art

Description

PHXmuraltour is an app for iPhone and Android that guides users through the plethora of mural art in downtown Phoenix. It can be found and downloaded from iTunes and the

PHXmuraltour is an app for iPhone and Android that guides users through the plethora of mural art in downtown Phoenix. It can be found and downloaded from iTunes and the Android app store. Before the artists began drawing people downtown for events like First Fridays and ArtDetour during the 1980s, Phoenix was notorious for having a deserted city core. The art community brought life, color and vibrancy to the downtown landscape. The website giving more information about the project can be found at http://kristenhwang.com/PHX-mural-tour.html. This project aims to widen the reach of the mural art in downtown Phoenix. Public art has the unique ability to foster a conversation between people who may not think of themselves as art connoisseurs, but like all kinds of art the message can sometimes be mysterious to passersby. Many of the murals downtown portray Hispanic or Native American themes, make political statements, document historic events and people, or serve as visual spice. They are emblems of the values the downtown community identifies with--values like creativity, enterprise, civic responsibility and diversity. This project hopes to make these messages more prominent to people in downtown Phoenix. It is important for the students, workers, shop owners and residents downtown to have the opportunity to learn more about the mural art because the art community surrounding Roosevelt Row played an integral role in shaping the culture and texture of their daily lives.

Contributors

Created

Date Created
  • 2014-12

130405-Thumbnail Image.png

Early-Type Galaxies at Intermediate Redshift Observed With Hubble Space Telescope WFC3: Perspectives on Recent Star Formation

Description

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic stellar models to the ETGs UV-optical-near-IR spectral energy distributions and find that a large fraction (∼40%) are likely to have experienced a minor (fYC ≲ 10% of stellar mass) burst of recent (tYC ≲ 1 Gyr) star formation. The measured age and mass fraction of the young stellar populations do not strongly trend with measurements of galaxy morphology. We note that massive (M > 1010.5M☼) recent star-forming ETGs appear to have larger sizes. Furthermore, high-mass, quiescent ETGs identified with likely companions populate a distinct region in the size-mass parameter space, in comparison with the distribution of massive ETGs with evidence of recent star formation (RSF). We conclude that both mechanisms of quenching star formation in disk-like ETGs and (gas-rich, minor) merger activity contribute to the formation of young stars and the size-mass evolution of intermediate redshift ETGs. The number of ETGs for which we have both HST WFC3 panchromatic (especially UV) imaging and spectroscopically confirmed redshifts is relatively small, therefore, a conclusion about the relative roles of both of these mechanisms remains an open question.

Contributors

Created

Date Created
  • 2014-12-01

130290-Thumbnail Image.png

The Accretion of Solar Material Onto White Dwarfs: No Mixing With Core Material Implies That the Mass of the White Dwarf is Increasing

Description

Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star

Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion.

Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10[superscript 12] cm and the evolution is ended. In all cases where mass ejection occurs, the mass of the ejecta is far less than the mass of the accreted material. Therefore, all the WDs are growing in mass. It is also found that the accretion time to explosion can be sufficiently short for a 1.0M[subscript ⊙] WD that recurrent novae can occur on a low mass WD. This mass is lower than typically assumed for the WDs in recurrent nova systems. Finally, the predicted surface temperatures when the WD is near the peak of the explosion imply that only the most massive WDs will be significant X-ray emitters at this time.

Contributors

Created

Date Created
  • 2014-02-25

134651-Thumbnail Image.png

Photosynthesis under Rocks: Hypolith Distribution across the Namib Desert Rainfall Gradient

Description

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.

Contributors

Agent

Created

Date Created
  • 2016-12