Matching Items (2)
Filtering by

Clear all filters

136716-Thumbnail Image.png
Description
The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with the assistance of inertial sensors for guidance. Autonomous systems depend

The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with the assistance of inertial sensors for guidance. Autonomous systems depend heavily on the use of a global positioning satellite receiver which can be inhibited by satellite signal strength, low update rates and poor positioning accuracy. For precise navigation of a micro air vehicle in locations where GPS signals are unobtainable, such as indoors or throughout a dense urban environment, additional sensors must complement the inertial sensors to provide improved navigation state estimations without the use of a GPS. By creating a system that allows for the rapid development of experimental guidance, navigation and control algorithms on versatile, low-cost development platforms, improved navigation systems may be tested with relative ease and at reduced cost. Incorporating a downward-facing camera with this system may also be utilized to further improve vehicle autonomy in denied-GPS environments.
ContributorsPolak, Adam Michael (Author) / Rodriguez, Armando (Thesis director) / Saripalli, Srikanth (Committee member) / Hannan, Mike (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
137465-Thumbnail Image.png
Description
As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains

As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains untouched and unseen by the human eye. The biggest causality of this can be identified in the limitations of current technologies and the large expense associated with delving into these dangerous and uncharted areas. Underwater communication between unmanned devices is the solution to this problem. With the oceanic deployment of wirelessly connected unmanned underwater vehicles (UUVs), researchers can limit risk to human safely and retrieve invaluable oceanographic data from unimaginable depths. However, before this system can be physically deployed, the network topology and environmental interactions must be simulated. More specific to the application, how does attenuation of optical propagation degrade between transmissions? A widely used open source network simulator is the ns series: ns-1, ns-2, and ns-3. Ns-3 is the most recent version, and is a valuable tool for modeling network interactions. However, underwater simulation proposes a limitation \u2014 a three-dimensional consideration for pressure. To properly model this interaction, it is vital that an extension to ns-3 be provided in order to account for the affects pressure has on the propagation of a signal at varying depths.
ContributorsSowa, Ryan John (Author) / Richa, Andrea (Thesis director) / Saripalli, Srikanth (Committee member) / Zhou, Chenyang (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05