Matching Items (10)

152074-Thumbnail Image.png

Behavior of colloids with anisotropic diffusivities

Description

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.

Contributors

Agent

Created

Date Created
2013

152076-Thumbnail Image.png

Towards haptic intelligence for artificial hands: development and use of deformable, fluidic tactile sensors to relate action and perception

Description

Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself.

Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself. Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms are no match for their biological counterparts. Tactile sensors must not only meet stringent practical specifications for everyday use, but their signals must be processed and interpreted within hundreds of milliseconds. Control of artificial manipulators, ranging from prosthetic hands to bomb defusal robots, requires a constant reliance on visual feedback that is not entirely practical. To address this, we conducted three studies aimed at advancing artificial haptic intelligence. First, we developed a novel, robust, microfluidic tactile sensor skin capable of measuring normal forces on flat or curved surfaces, such as a fingertip. The sensor consists of microchannels in an elastomer filled with a liquid metal alloy. The fluid serves as both electrical interconnects and tunable capacitive sensing units, and enables functionality despite substantial deformation. The second study investigated the use of a commercially-available, multimodal tactile sensor (BioTac sensor, SynTouch) to characterize edge orientation with respect to a body fixed reference frame, such as a fingertip. Trained on data from a robot testbed, a support vector regression model was developed to relate haptic exploration actions to perception of edge orientation. The model performed comparably to humans for estimating edge orientation. Finally, the robot testbed was used to perceive small, finger-sized geometric features. The efficiency and accuracy of different haptic exploratory procedures and supervised learning models were assessed for estimating feature properties such as type (bump, pit), order of curvature (flat, conical, spherical), and size. This study highlights the importance of tactile sensing in situations where other modalities fail, such as when the finger itself blocks line of sight. Insights from this work could be used to advance tactile sensor technology and haptic intelligence for artificial manipulators that improve quality of life, such as prosthetic hands and wheelchair-mounted robotic hands.

Contributors

Agent

Created

Date Created
2013

152349-Thumbnail Image.png

Closed-form inverse kinematic solution for anthropomorphic motion in redundant robot arms

Description

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.

Contributors

Agent

Created

Date Created
2013

151510-Thumbnail Image.png

Least-squares fit for points measured along line-profiles formed from line and arc segments

Description

Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control

Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified tolerances. This thesis describes a new method for quality control of a manufacturing process by improving the method used to convert measured points on a part to a geometric entity that can be compared directly with tolerance specifications. The focus of this paper is the development of a new computational method for obtaining the least-squares fit of a set of points that have been measured with a coordinate measurement machine along a line-profile. The pseudo-inverse of a rectangular matrix is used to convert the measured points to the least-squares fit of the profile. Numerical examples are included for convex and concave line-profiles, that are formed from line- and circular arc-segments.

Contributors

Agent

Created

Date Created
2013

150144-Thumbnail Image.png

Single-unit responses in somatosensory cortex to precision grip of textured surfaces

Description

In the past decade, research on the motor control side of neuroprosthetics has steadily gained momentum. However, modern research in prosthetic development supplements a focus on motor control with a concentration on sensory feedback. Simulating sensation is a central issue

In the past decade, research on the motor control side of neuroprosthetics has steadily gained momentum. However, modern research in prosthetic development supplements a focus on motor control with a concentration on sensory feedback. Simulating sensation is a central issue because without sensory capabilities, the sophistication of the most advanced motor control system fails to reach its full potential. This research is an effort toward the development of sensory feedback specifically for neuroprosthetic hands. The present aim of this work is to understand the processing and representation of cutaneous sensation by evaluating performance and neural activity in somatosensory cortex (SI) during a grasp task. A non-human primate (Macaca mulatta) was trained to reach out and grasp textured instrumented objects with a precision grip. Two different textures for the objects were used, 100% cotton cloth and 60-grade sandpaper, and the target object was presented at two different orientations. Of the 167 cells that were isolated for this experiment, only 42 were recorded while the subject executed a few blocks of successful trials for both textures. These latter cells were used in this study's statistical analysis. Of these, 37 units (88%) exhibited statistically significant task related activity. Twenty-two units (52%) exhibited statistically significant tuning to texture, and 16 units (38%) exhibited statistically significant tuning to posture. Ten of the cells (24%) exhibited statistically significant tuning to both texture and posture. These data suggest that single units in somatosensory cortex can encode multiple phenomena such as texture and posture. However, if this information is to be used to provide sensory feedback for a prosthesis, scientists must learn to further parse cortical activity to discover how to induce specific modalities of sensation. Future experiments should therefore be developed that probe more variables and that more systematically and comprehensively scan somatosensory cortex. This will allow researchers to seek out the existence or non-existence of cortical pockets reserved for certain modalities of sensation, which will be valuable in learning how to later provide appropriate sensory feedback for a prosthesis through cortical stimulation.

Contributors

Agent

Created

Date Created
2011

150828-Thumbnail Image.png

Multi-directional slip detection between artificial fingers and a grasped object

Description

Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors

Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode array, were used to understand how grip force, contact angle, object texture, and slip direction may be encoded in the sensor data. Findings show that slip induced under conditions of high contact angles and grip forces resulted in significant changes in both AC and DC pressure magnitude and rate of change in pressure. Slip induced under conditions of low contact angles and grip forces resulted in significant changes in the rate of change in electrode impedance. Slip in the distal direction of a precision grip caused significant changes in pressure magnitude and rate of change in pressure, while slip in the radial direction of the wrist caused significant changes in the rate of change in electrode impedance. A strong relationship was established between slip direction and the rate of change in ratios of electrode impedance for radial and ulnar slip relative to the wrist. Consequently, establishing multiple thresholds or establishing a multivariate model may be a useful method for detecting and characterizing slip. Detecting slip for low contact angles could be done by monitoring electrode data, while detecting slip for high contact angles could be done by monitoring pressure data. Predicting slip in the distal direction could be done by monitoring pressure data, while predicting slip in the radial and ulnar directions could be done by monitoring electrode data.

Contributors

Agent

Created

Date Created
2012

151787-Thumbnail Image.png

EMG-based robot control interfaces: beyond decoding

Description

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.

Contributors

Agent

Created

Date Created
2013

152921-Thumbnail Image.png

An investigation of kinematic redundancy for reduced error in micromilling

Description

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due to the scale effects. These scale effects occur due to unequal scaling of the parameters from the macroscale to the microscale milling. One key example of scale effects in micromilling process is a geometrical source of error known as chord error. The chord error limits the feedrate to a reduced value to produce the features within machining tolerances. In this research, it is hypothesized that the increase of chord error in micromilling can be alleviated by intelligent modification of the kinematic arrangement of the micromilling machine. Currently, all 3-axis micromilling machines are constructed with a Cartesian kinematic arrangement with three perpendicular linear axes. In this research, the cylindrical kinematic arrangement is introduced, and an analytical expression for the chord error for this arrangement is derived. The numerical simulations are performed to evaluate the chord errors for the cylindrical kinematic arrangement. It is found that cylindrical kinematic arrangement gives reduced chord error for some types of the desired toolpaths. Then, the kinematic redundancy is introduced to design a novel kinematic arrangement. Several desired toolpaths have been numerically simulated to evaluate the chord error for kinematically redundant arrangement. It is concluded that this arrangement gives up to 5 times reduced error for all the desired toolpaths considered, and allows significant gains in allowable feedrates.

Contributors

Agent

Created

Date Created
2014

154883-Thumbnail Image.png

Haptic perception, decision-making, and learning for manipulation with artificial hands

Description

Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to

Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact with and manipulate the world diminish their usefulness. In order to advance robot end effectors, specifically artificial hands, rich multimodal tactile sensing is needed. In this work, a multi-articulating, anthropomorphic robot testbed was developed for investigating tactile sensory stimuli during finger-object interactions. The artificial finger is controlled by a tendon-driven remote actuation system that allows for modular control of any tendon-driven end effector and capabilities for both speed and strength. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. Next, attention was focused on real-time artificial perception for decision-making. A robotic system needs to perceive its environment in order to make decisions. Specific actions such as “exploratory procedures” can be employed to classify and characterize object features. Prior work on offline perception was extended to develop an anytime predictive model that returns the probability of having touched a specific feature of an object based on minimally processed sensor data. Developing models for anytime classification of features facilitates real-time action-perception loops. Finally, by combining real-time action-perception with reinforcement learning, a policy was learned to complete a functional contour-following task: closing a deformable ziplock bag. The approach relies only on proprioceptive and localized tactile data. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards within a finite time period by balancing exploration versus exploitation of the action space. Performance of the C-MAB learner was compared to a benchmark Q-learner that eventually returns the optimal policy. To assess robustness and generalizability, the learned policy was tested on variations of the original contour-following task. The work presented contributes to the full range of tools necessary to advance the abilities of artificial hands with respect to dexterity, perception, decision-making, and learning.

Contributors

Agent

Created

Date Created
2016

155813-Thumbnail Image.png

Gamma Band Oscillation Response to Somatosensory Feedback Stimulation Schemes Constructed on Basis of Biphasic Neural Touch Representation

Description

Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be

Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be used to deliver sensations, but standard schemes used in sensorized prosthetic systems induce percepts inconsistent with natural sensations, providing limited benefit. Recent uses of time varying stimulation strategies appear to produce more practical sensations, but without a clear path to pursue improvements. This dissertation examines the use of physiologically based stimulation strategies to elicit sensations that are more readily interpretable. A psychophysical experiment designed to investigate sensitivities to the discrimination of perturbation direction within precision grip suggests that perception is biomechanically referenced: increased sensitivities along the ulnar-radial axis align with potential anisotropic deformation of the finger pad, indicating somatosensation uses internal information rather than environmental. Contact-site and direction dependent deformation of the finger pad activates complimentary fast adapting and slow adapting mechanoreceptors, exhibiting parallel activity of the two associate temporal patterns: static and dynamic. The spectrum of temporal activity seen in somatosensory cortex can be explained by a combined representation of these distinct response dynamics, a phenomenon referred in this dissertation to “biphasic representation.” In a reach-to-precision-grasp task, neurons in somatosensory cortex were found to possess biphasic firing patterns in their responses to texture, orientation, and movement. Sensitivities seem to align with variable deformation and mechanoreceptor activity: movement and smooth texture responses align with potential fast adapting activation, non-movement and coarse texture responses align with potential increased slow adapting activation, and responses to orientation are conceptually consistent with coding of tangential load. Using evidence of biphasic representations’ association with perceptual priorities, gamma band phase locking is used to compare responses to peripheral nerve stimulation patterns and mechanical stimulation. Vibrotactile and punctate mechanical stimuli are used to represent the practical and impractical percepts commonly observed in peripheral nerve stimulation feedback. Standard patterns of constant parameters closely mimic impractical vibrotactile stimulation while biphasic patterns better mimic punctate stimulation and provide a platform to investigate intragrip dynamics representing contextual activation.

Contributors

Agent

Created

Date Created
2017