Matching Items (3)

149939-Thumbnail Image.png

Modeling of total ionizing dose effects in advanced complementary metal-oxide-semiconductor technologies

Description

The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the

The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricated in advanced CMOS technologies requires understanding and analyzing the basic mechanisms that result in buildup of radiation-induced defects in specific sensitive regions. Extensive experimental studies have demonstrated that the sensitive regions are shallow trench isolation (STI) oxides. Nevertheless, very little work has been done to model the physical mechanisms that result in the buildup of radiation-induced defects and the radiation response of devices fabricated in these technologies. A comprehensive study of the physical mechanisms contributing to the buildup of radiation-induced oxide trapped charges and the generation of interface traps in advanced CMOS devices is presented in this dissertation. The basic mechanisms contributing to the buildup of radiation-induced defects are explored using a physical model that utilizes kinetic equations that captures total ionizing dose (TID) and dose rate effects in silicon dioxide (SiO2). These mechanisms are formulated into analytical models that calculate oxide trapped charge density (Not) and interface trap density (Nit) in sensitive regions of deep-submicron devices. Experiments performed on field-oxide-field-effect-transistors (FOXFETs) and metal-oxide-semiconductor (MOS) capacitors permit investigating TID effects and provide a comparison for the radiation response of advanced CMOS devices. When used in conjunction with closed-form expressions for surface potential, the analytical models enable an accurate description of radiation-induced degradation of transistor electrical characteristics. In this dissertation, the incorporation of TID effects in advanced CMOS devices into surface potential based compact models is also presented. The incorporation of TID effects into surface potential based compact models is accomplished through modifications of the corresponding surface potential equations (SPE), allowing the inclusion of radiation-induced defects (i.e., Not and Nit) into the calculations of surface potential. Verification of the compact modeling approach is achieved via comparison with experimental data obtained from FOXFETs fabricated in a 90 nm low-standby power commercial bulk CMOS technology and numerical simulations of fully-depleted (FD) silicon-on-insulator (SOI) n-channel transistors.

Contributors

Agent

Created

Date Created
  • 2011

158643-Thumbnail Image.png

Pre-Silicon Analysis of a Single Event Transient Pulse Measurement Test Structure in a FinFET Process

Description

A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element

A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element capturing the transient pulse depends on the width of the pulse. Measuring the rate of occurrence and the distribution of SET pulse widths is essential to understand the likelihood of soft errors and to develop cost-effective mitigation schemes. Existing research measures the pulse width of SETs in bulk Complementary Metal-Oxide-Semiconductor (CMOS) and Silicon On Insulator (SOI) technologies, but not on Fin Field-Effect Transistors (FinFETs). This thesis focuses on developing a test structure on the FinFET process to generate, propagate, and separate SETs and build a time-to-digital converter to measure the pulse width of SET.

The proposed SET test structure statistically separates SETs generated at NMOS and PMOS based on the difference in restoring current. It consists of N-collection devices to collect events at NMOS and P-collection devices to collect events at PMOS. The events that occur in PMOS of the N-collection device and NMOS of the P-collection device are false events. The logic gates of the collection devices are skewed to perform pulse expansion so that a minimally sustained SET propagates without getting suppressed by the contamination delay. A symmetric tree structure with an S-R latch event detector localizes the location of the SET. The Cartesian coordinates-based pulse injection structure injects external pulses at specific nodes to perform instrumentation and calibrate the measurement. A thermometer-encoded chain (vernier chain) with mismatched delay paths measures the width of the SET.

For low Linear Energy Transfer (LET) tests, the false events are entirely masked and do not propagate since the amount of charge that has to be deposited for successful event propagation is significantly high. In the case of high LET tests, the actual events and false events propagate, but they can be separated based on the SET location and the width of the output event. The vernier chain has a high measurement resolution of ~3.5ps, which aids in separating the events.

Contributors

Agent

Created

Date Created
  • 2020

161989-Thumbnail Image.png

Electronic Devices Based on Ultra-wide Bandgap AlN and β-Ga2O3: Device Fabrication, Radiation Effects, and Defect Characterization

Description

The advent of silicon, germanium, narrow-gap III-V materials, and later the wide bandgap (WBG) semiconductors, and their subsequent revolution and enrichment of daily life begs the question: what is the

The advent of silicon, germanium, narrow-gap III-V materials, and later the wide bandgap (WBG) semiconductors, and their subsequent revolution and enrichment of daily life begs the question: what is the next generation of semiconductor electronics poised to look like? Ultrawide bandgap (UWBG) semiconductors are the class of semiconducting materials that possess an electronic bandgap (EG) greater than that of gallium nitride (GaN), which is 3.4 eV. They currently consist of beta-phase gallium oxide (β-Ga2O3 ; EG = 4.6–4.9 eV), diamond (EG = 5.5 eV), aluminum nitride (AlN; EG =6.2 eV), cubic boron nitride (BN; EG = 6.4 eV), and other materials hitherto undiscovered. Such a strong emphasis is placed on the semiconductor bandgap because so many relevant electronic performance properties scale positively with the bandgap. Where power electronics is concerned, the Baliga's Figure of Merit (BFOM) quantifies how much voltage a device can block in the off state and how high its conductivity is in the on state. The BFOM has a sixth-order dependence on the bandgap. The UWBG class of semiconductors also possess the potential for higher switching efficiencies and power densities and better suitability for deep-UV and RF optoelectronics. Many UWBG materials have very tight atomic lattices and high displacement energies, which makes them suitable for extreme applications such as radiation-harsh environments commonly found in military, industrial, and outer space applications. In addition, the UWBG materials also show promise for applications in quantum information sciences. For all the inherent promise and burgeoning research efforts, key breakthroughs in UWBG research have only occurred as recently as within the last two to three decades, making them extremely immature in comparison with the well-known WBG materials and others before them. In particular, AlN suffers from a lack of wide availability of low-cost, highquality substrates, a stark contrast to β-Ga2O3, which is now readily commercially available. In order to realize more efficient and varied devices on the relatively nascent UWBG materials platform, a deeper understanding of the various devices and physics is necessary. The following thesis focuses on the UWBG materials AlN and β-Ga2O3, overlooking radiation studies, a novel device heterojunction, and electronic defect study.

Contributors

Agent

Created

Date Created
  • 2021