Matching Items (2)

133632-Thumbnail Image.png

Characterization of Ions Found in Circumgalactic Clouds

Description

Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at

Galaxies in the universe are surrounded by a hot medium called the Circum-Galactic Medium (CGM). Present the CGM is gas that forms up clouds which travel within the CGM at speeds that approximately range between 100 km/s and 300 km/s. These gas clouds are very interesting because they play a crucial in the formation of stars within the galaxies and also in the overall evolution of galaxies. The clouds could in fact be thought of as mobile "gas stations" whose sole purpose is facilitate the ionization of elements and ultimately supply gas to galaxies. My thesis project is a follow-up study on CGM gas cloud observations that were made by Borthakur et. al. (2016). Using Cosmic Origins Spectrograph (COS) data from the Hubble Space Telescope (HST), Borthakur et. al. (2016) observed the presence of both Carbon IV (C IV) and Oxygen VI (O IV) but did not observe any Nitrogen V (N V) in the gas cloud when expected to be observable. Therefore, the ultimate goal of my research was to determine whether indeed CGM gas clouds have an actual shortage of the N V ion. My research involves the generation of cosmological simulations of a cold gas cloud that has a radius of 98 parsecs, relative velocity of 200 km/s, density range of 10-3 to -5 and a temperature in the range of ~104 to 5 K, and also a hot CGM that has density in the range of 10-4.5 to -6 particles/cm3 and temperature of approximately 106 K. Traces of N v are observed in my simulations.

Contributors

Agent

Created

Date Created
  • 2018-05

158857-Thumbnail Image.png

A Uniform Retrieval Analysis of Ultra-cool Dwarfs. IV. A Statistical Census from 50 Late T-dwarfs

Description

The spectra of brown dwarfs are key to exploring the chemistry and physics thattake place in their atmospheres. Late T dwarf (950 - 500 K) spectra are particularly
diagnostic due

The spectra of brown dwarfs are key to exploring the chemistry and physics thattake place in their atmospheres. Late T dwarf (950 - 500 K) spectra are particularly
diagnostic due to their relatively cloud free atmospheres and deep molecular
bands. With the use of powerful atmospheric retrieval tools, these properties permit
constraints on molecular/atomic abundances and temperature profiles. Building
upon previous analyses on T and Y dwarfs (Line et al. 2017; Zalesky et al. 2019),
I present a uniform retrieval analysis of 50 T dwarfs via their low-resolution near infrared
spectra. This analysis more than doubles the sample of T dwarfs with retrieved
properties. I present updates on current compositional trends and thermal
profile constraints amongst the T dwarf population. My analysis shows that my collection
of objects form trends that are consistent with solar grid model expectations
for water, ammonia, methane, and potassium. I also establish a consistency between
the thermal structures of my objects with those of grid models. Moreover, I explore
the origin of gravity-metallicity discrepancies that are observed in some of my brown
dwarf candidates.

Contributors

Agent

Created

Date Created
  • 2020