Matching Items (3)
Filtering by

Clear all filters

136715-Thumbnail Image.png
Description
Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all

Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all of the processes carried out by these organisms and their importance to the soil. This is because microarthropod extraction methods are not 100% effective at collecting specimens. This study aimed to find an ideal quantitative procedure to better record the number of microarthropods existing in the soil and to determine if a seasonal variation exists that effects the success of extraction. Two extraction methods, including dynamic extraction and heptane flotation extraction, were compared across two seasons, a dry season (June) and a wet season (September). Average biomasses and average richness were calculated for four different functional groups, including Prostigmata, Mesostigmata, Cryptostigmata, and Collembola, across the two seasons, and statistical analysis was performed to determine if any differences that existed were statistically significant. Results indicate that the dynamic extraction method was significantly more effective for the collection of microarthropods during the wet season, and the heptane extraction method was significantly more effective during the dry season. In addition, the heptane procedure recovered samples of higher average richness than the dynamic method during both seasons. The heptane procedure works best for extraction during the dry season because it is able to collect organisms that entered into an ametabolic anhydrobiotic state to escape desiccation. These organisms form a protective lipid layer around their exoskeletons to retain water, and the non-polar exoskeletons display a chemical affinity to the heptane fluid, allowing for collection out of the soil and into the heptane layer. Despite these results, no one method is entirely superior to the other, and the most efficacious procedure depends on the researcher's aim of study.
ContributorsAntol, Rachel Lynn (Author) / Sabo, John L. (Thesis director) / Hall, Sharon (Committee member) / Wyant, Karl A. (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
149442-Thumbnail Image.png
Description

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several observational and experimental studies were performed in the metropolitan area of Phoenix, Arizona, and the surrounding Sonoran Desert. The first study was comprised of seven years of arthropod monitoring using pitfall traps in common urban land-use types. This study revealed differences in community structure, diversity and abundance over time and between urban and wildland habitats. Urban habitats with high productivity had higher abundances of arthropods, but lower diversity compared to wildland habitats. Arthropod abundance in less-productive urban habitats was positively correlated with precipitation, but abundance in high-productivity urban habitats was completely decoupled from annual fluctuations in precipitation. This study showed the buffering capacity and the habitat heterogeneity of urban areas. To test the mechanisms controlling community diversity and structure in urban areas, a major field experiment was initiated. Productivity of the native shrub Encelia farinosa and bird predation of associated arthropods were manipulated to test whether bottom-up or top-down forces were more important in urban habitats compared to wildland habitats. Abundance, richness and similarity were monitored, revealing clear differences between urban and wildland habitats. An unusually cold and dry first season had a negative effect on plant growth and arthropod abundance. Plants in urban habitats were relatively unaffected by the low temperature. An increase in arthropod abundance with water availability indicated bottom-up forces in wildland habitats, whereas results from bird exclusions suggested that bird predation may not be as prominent in cities as previously thought. In contrast to the pitfall study, arthropod abundance was lower in urban habitats. A second field experiment testing the sheltering effect of urban structures demonstrated that reduced wind speed is an important factor facilitating plant growth in urban areas. A mathematical model incorporating wind, water and temperature demonstrated that urban habitats may be more robust than wildland habitats, supporting the empirical results.

ContributorsBang, Christofer (Author) / Faeth, Stanley H. (Thesis advisor) / Sabo, John L. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, J. Marty (Committee member) / Warren, Paige S. (Committee member) / Arizona State University (Publisher)
Created2010
132749-Thumbnail Image.png
Description

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern

This study examined crayfish diet within varying hydrologic environment in lotic systems using stable isotope analysis of crayfish and basal resources to add depth to previous findings. Crayfish are numerous and are omnivorous, opportunistic feeders, feeding on invertebrates, vegetation and detritus. Arizona streams stand apart from the Eastern and Northwestern aquatic ecosystems of the United States because Arizona has no native crayfish species. Two species have been introduced and become widely established in Arizona (Orconectes virilis and Procambarus clarkii), with concern for further introduction of crayfish species and more information on how these two species impact the native species in the streams is needed. Previous studies have focused on crayfish abundance with hydrologic variation and crayfish diets within a lentic system, but few have focused on how the diet of consumers varies with hydrologic variability. Crayfish are hardy and have a dramatically increasing population within Arizona and therefore inhabit systems with a wide range of hydrologic variability which may contribute to spatial variability. The results show that crayfish diets do show a significant level of seasonal variation in some study locations, in both C source and trophic level. Hydrologic variation was also shown to impact crayfish diet at several study sites, with increasing magnitude of event (both floods and droughts) correlating with a change toward more aquatic C sources and lower trophic position in several of the study sites. In some locations, the correlation was not as strong with variation and diet change and showed less change in C source and rather showed an increase in trophic position.

ContributorsThompson, Sara Nicole (Author) / Sabo, John L. (Thesis director) / Grimm, Nancy (Committee member) / Baruch, Ethan M. (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05