Matching Items (33)

128501-Thumbnail Image.png

Sustaining dry surfaces under water

Description

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Contributors

Created

Date Created
  • 2015-08-18

135185-Thumbnail Image.png

Measurement of Liquid Contact Angle on a Powder

Description

The wettability of powders is an important characteristic for both industry and academia and is often described by the powder’s contact angle with a certain liquid. While there exist many

The wettability of powders is an important characteristic for both industry and academia and is often described by the powder’s contact angle with a certain liquid. While there exist many ways to measure contact angle, it is a portion of the powder technology field that is not fully understood and requires more investigation and research. This study investigates two methods for measuring contact angle, the sessile drop method and the Washburn method, and looks to compare results to determine which method offers the most reliable data in terms of accuracy and repeatability. Two powders - microcrystalline cellulose and aluminum oxide - and three liquids - water, 50 cSt silicone oil, and 350 cSt silicone oil - were used to study the differences between the two measurement techniques as well as the effects of varying fluid viscosity on the measurements. It was found that the sessile drop method proved to be an ineffective method for measuring contact angle when liquid penetration into the powder occurred, as the contact angle changed while the drop penetrated. Initial results showed the contact angle for silicone oil on the powders to be greater than 90°, indicating nonwetting of the surface which was inconsistent with observations. The results from the Washburn method align better with other values in similar studies, but more study is needed to confirm the results gathered in this research.

Contributors

Agent

Created

Date Created
  • 2016-05

135781-Thumbnail Image.png

Porous Liquid Metal Matrix Embedded in Elastic Substrate

Description

Research on incorporating liquid metal into flexible substrates has resulted in a new avenue for research. Currently, the most promising technique performed was coating a cotton fiber in liquid metal

Research on incorporating liquid metal into flexible substrates has resulted in a new avenue for research. Currently, the most promising technique performed was coating a cotton fiber in liquid metal and then using high heat to remove the fiber from the liquid metal without the use of flames or solvents. This is promising in that thin fibers could be coated to create the circuitry, then removed from the liquid metal. The remaining liquid metal could then be encased in a flexible polymer. This then sparked the idea of using a mortar and pestle to manually mix the liquid metal into the elastic substrate, in this case PDMS. Other materials can also be mixed in, such as graphite or alumina to create thermal interface materials (TIMs). These compounds are then poured into molds to cure, then are taken to be tested for thermal conductivity. The results have not yet returned, but this research will continue by changing the ratios of the materials in the TIMs as well as moving forward with encasing the remaining Galistan in elastomer once the fabric was removed through oxidation.

Contributors

Agent

Created

Date Created
  • 2016-05

136518-Thumbnail Image.png

Edible Microfluidics: 3D Printing Hydrogels Using a Co-Flow Nozzle Extruder

Description

3D printing has recently become a popular manufacturing process and the goal of the project was to take that process to the kitchen. This was done by utilizing existing knowledge

3D printing has recently become a popular manufacturing process and the goal of the project was to take that process to the kitchen. This was done by utilizing existing knowledge of the culinary process of "spherification", by which a liquid is encapsulated in an edible shell, and combining it with the hydrogel research advancements in tissue engineering to make robust fibers. A co-flow nozzle was constructed and the two fluids needed for spherification were flowed in various configurations to create different fibers. By outlining a stability regime and measuring the outer diameters for both regular and reverse spherification, the optimal method of production and fibers that would be suitable for 3D printing were discovered. The results of the experiments can be used to begin 3D printing edible 2D patterns and eventually 3D structures.

Contributors

Created

Date Created
  • 2015-05

132086-Thumbnail Image.png

Thermal Interface Materials

Description

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in contact with each other experience a very large thermal contact resistance, this creates a thermal bottleneck which severely decreases the heat transfer from one solid to another. To solve this, particles with a high thermal conductivity are used as filler material in either a grease or polymer. A common application for TIMs is in computer components, where a TIM is used to remove the heat generated from computer chips. These materials allow for computer chips to run faster without overheating or throttling performance. However, further improvements to TIMs are still desired, which are needed for more powerful computer chips. In this work, a Stepped Bar Apparatus (SBA) is used to evaluate the thermal properties of TIMs. The SBA is based on Fourier’s Law of one-dimensional heat transfer. This work explains the fundamentals of the SBA measurement, and develops a reliable way to confirm the SBA’s measurement consistency through the use of reference samples. Furthermore, this work evaluates the effects of volume fraction and magnetic alignment on the performance of nickel flakes mixed into a polymer to create a soft TIM composite pad. Magnets are used to align the nickel flakes into a column like arrangement in the direction that heat will travel. Magnetic alignment increases the thermal conductivity of the composite pads, and has peak performance at low compression.

Contributors

Agent

Created

Date Created
  • 2019-12

158822-Thumbnail Image.png

Fundamentals of Soft, Stretchable Heat Exchanger Design

Description

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.

Contributors

Agent

Created

Date Created
  • 2020

153979-Thumbnail Image.png

Numerical modelling of galvanic structural joints subjected to combined environmental and mechanical loading

Description

Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure

Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure of the structural joints. In the case of aluminum alloys under aggressive environment, the damage accumulation is predominantly due to corrosion and is accelerated in presence of other metals. During recent years several approaches have been employed to develop models to assess the metal removal rate in the case of galvanic corrosion. Some of these models are based on empirical methods such as regression analysis while others are based on quantification of the ongoing electrochemical processes. Here, a numerical model for solving the Nernst- Planck equation, which captures the electrochemical process, is implemented to predict the galvanic current distribution and, hence, the corrosion rate of a galvanic couple. An experimentally validated numerical model for an AE44 (Magnesium alloy) and mild steel galvanic couple, available in the literature, is extended to simulate the mechano- electrochemical process in order to study the effect of mechanical loading on the galvanic current density distribution and corrosion rate in AE44-mild steel galvanic couple through a multiphysics field coupling technique in COMSOL Multiphysics®. The model is capable of tracking moving boundariesy of the corroding constituent of the couple by employing Arbitrary Langrangian Eulerian (ALE) method.Results show that, when an anode is under a purely elastic deformation, there is no apparent effect of mechanical loading on the electrochemical galvanic process. However, when the applied tensile load is sufficient to cause a plastic deformation, the local galvanic corrosion activity at the vicinity of the interface is increased remarkably. The effect of other factors, such as electrode area ratios, electrical conductivity of the electrolyte and depth of the electrolyte, are studied. It is observed that the conductivity of the electrolyte significantly influences the surface profile of the anode, especially near the junction. Although variations in electrolyte depth for a given galvanic couple noticeably affect the overall corrosion, the change in the localized corrosion rate at the interface is minimal. Finally, we use the model to predict the current density distribution, rate of corrosion and depth profile of aluminum alloy 7075-stainless steel 316 galvanic joints, which are extensively used in maritime structures.

Contributors

Agent

Created

Date Created
  • 2015

156397-Thumbnail Image.png

3D Printed Heat Exchangers: An Experimental Study

Description

As additive manufacturing grows as a cost-effective method of manufacturing, lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most critical thermal devices in the thermal

As additive manufacturing grows as a cost-effective method of manufacturing, lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most critical thermal devices in the thermal industry. Additive manufacturing brings us a design freedom no other manufacturing technology offers. Advancements in 3D printing lets us reimagine and optimize the performance of the heat exchangers with an incredible design flexibility previously unexplored due to manufacturing constraints.

In this research, the additive manufacturing technology and the heat exchanger design are explored to find a unique solution to improve the efficiency of heat exchangers. This includes creating a Triply Periodic Minimal Surface (TPMS) geometry, Schwarz-D in this case, using Mathematica with a flexibility to control the cell size of the models generated. This model is then encased in a closed cubical surface with manifolds for fluid inlets and outlets before 3D printed using the polymer nylon for thermal evaluation.

In the extent of this study, the heat exchanger developed is experimentally evaluated. The data obtained are used to derive a relationship between the heat transfer effectiveness and the Number of Transfer Units (NTU).The pressure loss across a fluid channel of the Schwarz D geometry is also studied.

The data presented in this study are part of initial experimental evaluation of 3D printed TPMS heat exchangers.Among heat exchangers with similar performance, the Schwarz D geometry is 32% smaller compared to a shell-and-tube heat exchanger.

Contributors

Agent

Created

Date Created
  • 2018

156655-Thumbnail Image.png

Opto-thermal Energy Transport with Selective Metamaterials and Solar Thermal Characterization of Selective Metafilm Absorbers

Description

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers.

This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide templates, aluminum nanodisc narrow-band absorbers were fabricated. A metrology instrument to measure the reflectance and transmittance of micro-scale samples was also developed and used to measure the reflectance of the aluminum nanodisc absorbers (220 µm diameter area). Tuning of the resonance wavelengths of these absorbers can be achieved through changing their geometry. Broadband absorption can be achieved by using a combination of geometries for these metamaterials which would facilitate their use as solar absorbers.

Recently, solar energy harvesting has become a topic of considerable research investigation due to it being an environmentally conscious alternative to fossil fuels. The next section discusses the steady-state temperature measurement of a lab-scale multilayer solar absorber, named metafilm. A lab-scale experimental setup is developed to characterize the solar thermal performance of selective solar absorbers. Under a concentration factor of 20.3 suns, a steady-state temperature of ~500 degrees Celsius was achieved for the metafilm compared to 375 degrees Celsius for a commercial black absorber under the same conditions. Thermal durability testing showed that the metafilm could withstand up to 700 degrees Celsius in vacuum conditions and up to 400 degrees Celsius in atmospheric conditions with little degradation of its optical and radiative properties. Moreover, cost analysis of the metafilm found it to cost significantly less ($2.22 per square meter) than commercial solar coatings ($5.41-100 per square meter).

Finally, this dissertation concludes with recommendations for further studies like using these selective metamaterials and metafilms as absorbers and emitters and using the aluminum nanodiscs on glass as selective filters for photovoltaic cells to enhance solar thermophotovoltaic energy conversion.

Contributors

Agent

Created

Date Created
  • 2018

157667-Thumbnail Image.png

Thermal and Vibration Characterization of Flexible Heat Sinks

Description

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds.

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.

Contributors

Agent

Created

Date Created
  • 2019