Matching Items (17)
151380-Thumbnail Image.png
Description
Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and

Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and iron (yusV) were measured under various nutrient enrichment experiments. While results for nrgA and phoA were inconclusive, results for yusV showed an increase in expression with the addition of N and Fe. This is the first data that shows the impact of nutrients on siderophore uptake regulation in hot spring microbes.
ContributorsThorne, Michele (Author) / Elser, James J (Thesis advisor) / Touchman, Jeffrey (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2012
152339-Thumbnail Image.png
Description
As an evolutionary force, hybridization outcomes include introgression, admixture, speciation, and reproductive isolation. While hybridization has been studied in several primates, the marmoset genus Callithrix is an important, but little studied example of Neotropical hybridization. Varying degrees of reproductive isolation exist between Callithrix species, and hybridization occurs at species borders

As an evolutionary force, hybridization outcomes include introgression, admixture, speciation, and reproductive isolation. While hybridization has been studied in several primates, the marmoset genus Callithrix is an important, but little studied example of Neotropical hybridization. Varying degrees of reproductive isolation exist between Callithrix species, and hybridization occurs at species borders or regions containing introduced and native species. Interbreeding between Callithrix species carries important implications for biodiversity and genetic integrity within the genus. However, species origins and levels of genetic admixture in marmoset hybrid zones are generally unknown, and few population genetic studies of individual Callithrix species exist. Using the mitochondrial control region and 44 microsatellite markers, this work explored the genetic diversity and species origins of two C. penicillata and C. jacchus hybrid zones, as well as genetic diversity and divergence in the parental species. Both marker types showed that C. penicillata is more genetically diverse than C. jacchus. Based on mtDNA, C. jacchus seems to have experienced a past population expansion and C. penicillata evolved under constant population size. The data revealed the existence of a previously undocumented natural hybrid zone along the São Francisco River in NE Brazil and confirmed species origins of an anthropogenic zone in Rio de Janeiro state. The data also showed much lower levels of admixture and genetic diversity within the natural hybrid zone than in the anthropogenic zone. Further, the data suggested that the São Francisco River is an important geographic barrier to gene flow in the natural hybrid zone. On the other hand, admixture patterns within the anthropogenic hybrid zone suggested collapse of reproductive barriers, and the formation of a hybrid marmoset swarm. Thus, this work suggested different evolutionary dynamics in anthropogenic vs. natural animal hybrid zones. Restriction Associated DNA sequencing (RADseq) identified a large number of single nucleotide polymorphisms within C. jacchus and C. penicillata genomes. These preliminary data were used to measure intraspecific genomic diversity and interspecific divergence. In the future, RADseq will be used to study genus-wide diversity of Callithrix species, examine past and present marmoset demographic history, and applied to the evolutionary study of marmoset hybridization.
ContributorsMalukiewicz, Joanna (Author) / Stone, Anne C. (Thesis advisor) / Nash, Leanne (Committee member) / Rosenberg, Michael (Committee member) / Hedrick, Phil (Committee member) / Ruiz-Miranda, Carlo (Committee member) / Arizona State University (Publisher)
Created2013
152820-Thumbnail Image.png
Description
Malaria is a vector-borne parasitic disease affecting tropical and subtropical regions. Regardless control efforts, malaria incidence is still incredible high with 219 million clinical cases and an estimated 660,000 related deaths (WHO, 2012). In this project, different population genetic approaches were explored to characterize parasite populations. The goal was to

Malaria is a vector-borne parasitic disease affecting tropical and subtropical regions. Regardless control efforts, malaria incidence is still incredible high with 219 million clinical cases and an estimated 660,000 related deaths (WHO, 2012). In this project, different population genetic approaches were explored to characterize parasite populations. The goal was to create a framework that considered temporal and spatial changes of Plasmodium populations in malaria surveillance. This is critical in a vector borne disease in areas of low transmission where there is not accurate information of when and where a patient was infected. In this study, fragment analysis data and single nucleotide polymorphism (SNPs) from South American samples were used to characterize Plasmodium population structure, patterns of migration and gene flow, and discuss approaches to differentiate reinfection vs. recrudescence cases in clinical trials. A Bayesian approach was also applied to analyze the Plasmodium population history by inferring genealogies using microsatellites data. Specifically, fluctuations in the parasite population and the age of different parasite lineages were evaluated through time in order to relate them with the malaria control plan in force. These studies are important to understand the turnover or persistence of "clones" circulating in a specific area through time and consider them in drug efficacy studies. Moreover, this methodology is useful for assessing changes in malaria transmission and for more efficiently manage resources to deploy control measures in locations that act as parasite "sources" for other regions. Overall, these results stress the importance of monitoring malaria demographic changes when assessing the success of elimination programs in areas of low transmission.
ContributorsChenet, Stella M (Author) / Escalante, Ananias A (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Rosenberg, Michael (Committee member) / Taylor, Jesse E (Committee member) / Arizona State University (Publisher)
Created2014
152772-Thumbnail Image.png
Description
A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.)

A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.) Coville: Zygophyllaceae) and several Asteraceae. Piscatopus was considered monotypic, comprised solely of P. griseus Sleeper, 1960, whereas Minyomerus formerly was comprised of seven species: M. innocuus Horn, 1876 (designated as the type species for Minyomerus in Pierce, 1913), M. caseyi (Sharp, 1891), M. conicollis Green, 1920, M. constrictus (Casey, 1888), M. languidus Horn, 1876, M. laticeps (Casey, 1888), M. microps (Say, 1831). This revision includes comprehensive redescriptions of the previously described species in these genera and descriptions of ten new species: M. imberbus sp. nov., M. caponei sp. nov., M. reburrus sp. nov., M. cracens sp. nov., M. trisetosus sp. nov., M. puticulatus sp. nov., M. bulbifrons sp. nov., M. politus sp. nov., M. gravivultus sp. nov., and M. rutellirostris sp. nov. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5 outgroup, 17 ingroup) was carried out in WinClada and yielded a single most-parsimonious cladogram (length = 82, consistency index = 65, retention index = 82). The monophyly of Minyomerus is supported by the preferred cladogram. The results of the cladistic analysis place Piscatopus griseus within the genus Minyomerus as sister to M. rutellirostris. Therefore, Piscatopus is demoted to a junior synonym of Minyomerus and its sole member P. griseus, is moved to Minyomerus as M. griseus (Sleeper), new combination. Additionally, the species M. innocuus Horn, 1876 is demoted to a junior synonym of M. microps (Say, 1831), based on the principle of priority, and M. microps is elevated to the rank of type for the genus. The species M. languidus, M. microps, and M. trisetosus are putatively considered parthenogenetic, and lack male specimens over a broad range of sampling events. The diversity in exterior and genitalic morphology, range of host plants, overlapping species distributions, and geographic extent suggests an origin during the Miocene (~15 mya).
ContributorsJansen, Michael Andrew (Author) / Franz, Nico M (Thesis advisor) / Wojciechowski, Martin (Committee member) / Rosenberg, Michael (Committee member) / Arizona State University (Publisher)
Created2014
150155-Thumbnail Image.png
Description
Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no obvious intracytoplasmic membranes in cells grown phototrophically, even under low light intensity. Analysis of the finished genome sequence reveals a single chromosome (3,809,266 bp) and a large plasmid (198,615 bp) that together harbor 4,262 putative genes. The genome contains two types of Rubiscos, Form IAq and Form II, which are known to exhibit quite different kinetic properties in other bacteria. The presence of multiple Rubisco forms could give R. antarcticus high metabolic flexibility in diverse environments. Annotation of the complete genome sequence along with previous experimental results predict the presence of structural genes for three types of light-harvesting (LH) complexes, LH I (B875), LH II (B800/850), and LH III (B800/820). There is evidence that expression of genes for the LH II complex might be inhibited when R. antarcticus is under low temperature and/or low light intensity. These interesting condition-dependent light-harvesting apparatuses and the control of their expression are very valuable for the further understanding of photosynthesis in cold environments. Finally, R. antarcticus exhibits a highly motile lifestyle. The genome content and organization of all putative polar flagella genes are characterized and discussed.
ContributorsZhao, Tingting, M.S (Author) / Touchman, Jeffrey (Thesis advisor) / Rosenberg, Michael (Committee member) / Redding, Kevin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
150780-Thumbnail Image.png
Description
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings?

Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings? Using three measurement tools, 142 participants from seven different biology courses at a community college and at a university were tested before and after collaborating about the biological process of natural selection. Three factors were analyzed to measure their effect on learning at the individual level and the group level. The three factors were: difference in prior knowledge, sex and religious beliefs. Gender and religious beliefs both had a significant effect on post-test scores.
ContributorsTouchman, Stephanie (Author) / Baker, Dale (Thesis advisor) / Rosenberg, Michael (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Arizona State University (Publisher)
Created2012
150424-Thumbnail Image.png
Description
The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.
ContributorsDixon, Sarah E (Author) / Chang, Yung (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Touchman, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
Description
Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine

Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine success. Furthermore, the three main domains within AMA-1 (Domains I, II, and III), possess variable polymorphic features and levels of diversity. Overcoming this issue may require an understanding of the type of selection acting on AMA-1 in P. falciparum and P. vivax. Therefore, this investigation aimed to determine the type of selection acting on the whole AMA-1 coding sequence and in each domain for P. falciparum and P. vivax. Population structure was investigated on a global scale and among individual countries. AMA-1 sequences were obtained from the National Center for Biotechnology. For P. falciparum, 649 complete and 382 partial sequences were obtained. For P. vivax, 395 sequences were obtained (370 partial). The AMA-1 gene in P. falciparum was found to possess high nonsynonymous polymorphisms and disproportionately low synonymous polymorphisms. Domain I was found to have the most diverse region with consistently high nonsynonymous substitutions across all countries. Large, positive, and significant Z-test scores indicated the presence of positive selection while FST and NST values showed low genetic differentiation across populations. Data trends for all analyses were relatively consistent for the global and country-based analyses. The only country to deviate was Venezuela, which was the only South American country analyzed. Network analyses did not show distinguishable groupings. For P. falciparum, it was concluded that positive diversifying selection was acting on the AMA-1 gene, particularly in Domain I. In AMA-1 of P. vivax, nonsynonymous and synonymous polymorphisms were relatively equal across all analyses. FST and NST values were high, indicating that countries were genetically distinct populations. Network analyses did not show distinguishable grouping; however, the data was limited to small sample sizes. From the data, it was concluded that AMA-1 in P. vivax was evolving neutrally, where selective pressures did not strongly encourage positive or purifying selection specifically. In addition, different AMA-1 P. vivax strains were genetically distinct and this genetic identity correlated with geographic region. Therefore, AMA-1 strains in P. falciparum and P. vivax not only evolve differently and undergo different form of selection, but they also require different vaccine development strategies. A combination of strain-specific vaccines along with preventative measures on an environmental level will likely be more effective than trying to achieve a single, comprehensive vaccine.
ContributorsEspinas, Jaye Frances Palma (Author) / Escalante, Ananias (Thesis director) / Taylor, Jay (Committee member) / Rosenberg, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137222-Thumbnail Image.png
Description
The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is

The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is found to have high variability across populations. Two single nucleotide polymorphisms (SNPs) at the human beta globin gene cluster, rs7482144 and rs10128556, contribute to the heritable variation in HbF levels and are associated with increased HbF concentrations in adults. A sample population of NCAA football student athletes was genotyped for these two polymorphisms, and their allele frequencies were compared to those of other populations. The minor allele of both polymorphisms had allele frequencies of 0.091 in the sample population, which compared closely with other populations of recent African heritage but was significantly different from European populations. The results of this study will be included in a larger study to predict whether these among other polymorphisms can be used as markers to predict susceptibility to heat-related emergencies in NCAA student athletes with SCT, although the small sample size will delay this process until participation in the study increases. Since both rs7482144 and rs10128556 exhibit high levels of linkage disequilibrium, and as their contributions to the heritable variability of HbF concentrations tend to differ greatly between populations of different ancestry, further investigations should be aimed at distinguishing between the effects of each SNP in African American, European, and other populations represented in NCAA football before conclusions can be drawn as to their practical use as genetic markers of heat susceptibility in student athletes with SCT.
ContributorsGrieger, Ryan Wayne (Author) / Stone, Anne C. (Thesis director) / Rosenberg, Michael (Committee member) / Madrigal, Lorena (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05