Matching Items (3)
150819-Thumbnail Image.png
Description
Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information is considered crucial for correct petrogenetic interpretations and will be key observations for assessing the potential for past habitability on

Future robotic and human missions to the Moon and Mars will need in situ capabilities to characterize the mineralogy of rocks and soils within a microtextural context. Such spatially-correlated information is considered crucial for correct petrogenetic interpretations and will be key observations for assessing the potential for past habitability on Mars. These data will also enable the selection of the highest value samples for further analysis and potential caching for return to Earth. The Multispectral Microscopic Imager (MMI), similar to a geologist's hand lens, advances the capabilities of current microimagers by providing multispectral, microscale reflectance images of geological samples, where each image pixel is comprised of a 21-band spectrum ranging from 463 to 1735 nm. To better understand the capabilities of the MMI in future surface missions to the Moon and Mars, geological samples comprising a range of Mars-relevant analog environments as well as 18 lunar rocks and four soils, from the Apollo collection were analyzed with the MMI. Results indicate that the MMI images resolve the fine-scale microtextural features of samples, and provide important information to help constrain mineral composition. Spectral end-member mapping revealed the distribution of Fe-bearing minerals (silicates and oxides), along with the presence of hydrated minerals. In the case of the lunar samples, the MMI observations also revealed the presence of opaques, glasses, and in some cases, the effects of space weathering in samples. MMI-based petrogenetic interpretations compare favorably with laboratory observations (including VNIR spectroscopy, XRD, and thin section petrography) and previously published analyses in the literature (for the lunar samples). The MMI was also deployed as part of the 2010 ILSO-ISRU field test on the slopes of Mauna Kea, Hawaii and inside the GeoLab as part of the 2011 Desert RATS field test at the Black Point Lava Flow in northern Arizona to better assess the performance of the MMI under realistic field conditions (including daylight illumination) and mission constraints to support human exploration. The MMI successfully imaged rocks and soils in outcrops and samples under field conditions and mission operation scenarios, revealing the value of the MMI to support future rover and astronaut exploration of planetary surfaces.
ContributorsNúñez Sánchez, Jorge Iván (Author) / Farmer, Jack D. (Thesis advisor) / Christensen, Philip R. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Robinson, Mark S. (Committee member) / Sellar, R. Glenn (Committee member) / Williams, Lynda B. (Committee member) / Arizona State University (Publisher)
Created2012
154314-Thumbnail Image.png
Description
Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.
ContributorsStopar, Julie D (Author) / Robinson, Mark S. (Thesis advisor) / Bell, James (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Clarke, Amanda (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016
161531-Thumbnail Image.png
Description
Water ice is a fundamental planetary building block and ubiquitous in the outer solar system. On Ocean worlds like Europa, convecting ice may transport material from a subsurface ocean (a potential habitat) to the surface, depositing ices and salts. Evaluating the habitability of Ocean Worlds, requires either unraveling the history

Water ice is a fundamental planetary building block and ubiquitous in the outer solar system. On Ocean worlds like Europa, convecting ice may transport material from a subsurface ocean (a potential habitat) to the surface, depositing ices and salts. Evaluating the habitability of Ocean Worlds, requires either unraveling the history of ice on the surface to contextualize biosignatures, or probing the ocean for direct access. There are, however, challenges to both exploration strategies. How can recent exposures of subsurface ice be identified? How can a probe penetrate beneath an ice shell and still communicate with the surface? I have developed techniques to address these questions, and pose new ones, using a two-part approach to exploration of Ocean Worlds, viewed as both remote sensing targets, and sites for in-situ analysis. First, I combined investigations using laboratory spectroscopy and Hapke modeling to identify the diagnostic limits of existing datasets, collected optical and spectral measurements of candidate ices at relevant conditions, and identified the effects of grain size, sample thickness, and thermal cycling on water ice absorption features. I designed this dataset to enable better interpretation of Galileo and upcoming Europa Clipper mission spectra, with a focus on characterization of surface properties. To demonstrate its efficacy, I determined the bulk crystallinity of Europa’s leading hemisphere, the environmental conditions required to meet current age estimates, and developed a criterion for selection of regions of recent exposure. Second, I simulated conditions in Europa’s interior and ice shell faults using cryogenic shear experiments, to evaluate the mechanical behavior of ice and explore the limitations of communication tethers for deployment by a melt probe transiting the ice shell. Surprisingly, I find that these tethers are robust across the range of temperature and velocity conditions expected on Europa and offer capabilities as potential science instruments to detect ice-quakes and characterize the thermal profile of the ice shell. Together, these studies improve the ability to probe the thermomechanical and compositional properties of dynamic ice shells, characterize the environments likely to be encountered by landed missions, and guide future technology development for assessing the habitability of Ocean Worlds.
ContributorsSingh, Vishaal (Author) / Desch, Steven J. (Thesis advisor) / Rhoden, Alyssa R. (Thesis advisor) / Bell, James F. (Committee member) / Robinson, Mark S. (Committee member) / Gudipati, Murthy S. (Committee member) / Arizona State University (Publisher)
Created2021