Matching Items (16)
151864-Thumbnail Image.png
Description
Growth of the Phoenix metropolitan area led to exposures of the internal bedrock structure of surrounding semi-arid mountain ranges as housing platforms or road cuts. Such exposures in the Sonoran and Mojave deserts reveal the presence of sedimentary calcium carbonate infilling the pre-existing fracture matrix of the bedrock. Field surveys

Growth of the Phoenix metropolitan area led to exposures of the internal bedrock structure of surrounding semi-arid mountain ranges as housing platforms or road cuts. Such exposures in the Sonoran and Mojave deserts reveal the presence of sedimentary calcium carbonate infilling the pre-existing fracture matrix of the bedrock. Field surveys of bedrock fractures filled with carbonate (BFFC) reveal an average of 0.079 +/- 0.024 mT C/m2 stored in the upper 2 m of analyzed bedrock exposures. Back-scattered electron microscopy images indicate the presence of carbonate at the micron scale, not included in this estimation. Analysis of the spatial extent of bedrock landforms in arid and semi-arid regions worldwide suggests that ~1485 GtC could potentially be stored in the upper 2 m horizon of BFFCs. Radiocarbon dating obtained at one of the sites indicates it is likely that some of the carbonate was flushed into the bedrock system during glacial wet pulses, and is stored on Pleistocene timescales or longer. Strontium isotope analysis at the same site suggest the potential for a substantial cation contribution from weathering of the local bedrock, indicating the potential exists for sequestration of atmospheric carbon in BFFCs. Rates of carbon release from BFFCs are tied to rates of erosion of bedrock ranges in desert climates.
ContributorsHarrison, Emma (Author) / Dorn, Ronald (Thesis advisor) / Reynolds, Stephen (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2013
152556-Thumbnail Image.png
Description
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's

Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.
ContributorsHaddad, David Elias (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Shirzaei, Manoochehr (Committee member) / Whipple, Kelin (Committee member) / Zielke, Olaf (Committee member) / Arizona State University (Publisher)
Created2014
149701-Thumbnail Image.png
Description
Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting and has a profound effect on student learning behavior. To evaluate how students visually interact with distracting scale items in photographs and to determine if cueing or signaling is an effective means to direct students to pertinent information, students were eye tracked while looking at geologically-rich photographs. Eye-tracking data revealed that learners primarily looked at the center of an image, focused on faces of both humans and animals if they were present, and repeatedly returned to looking at the scale item (distractor) for the duration an image was displayed. The presence of a distractor caused learners to look at less of an image than when a distractor was not present. Learners who received signaling tended to look at the distractor less, look at the geology more, and surveyed more of the photograph than learners who did not receive signaling. The San Antonio area in the southern part of the Baja California Peninsula is host to hydrothermal gold deposits. A field study, including drill-core analysis and detailed geologic mapping, was conducted to determine the types of mineralization present, the types of structures present, and the relationship between the two. This investigation revealed that two phases of mineralization have occurred in the area; the first is hydrothermal deposition of gold associated with sulfide deposits and the second is oxidation of sulfides to hematite, goethite, and jarosite. Mineralization varies as a function of depth, whereas sulfides occurring at depth, while minerals indicative of oxidation are limited to shallow depths. A structural analysis revealed that the oldest structures in the study area include low-grade to medium-grade metamorphic foliation and ductile mylonitic shear zones overprinted by brittle-ductile mylonitic fabrics, which were later overprinted by brittle deformation. Both primary and secondary mineralization in the area is restricted to the later brittle features. Alteration-bearing structures have an average NNW strike consistent with northeast-southwest-directed extension, whereas unaltered structures have an average NNE strike consistent with more recent northwest-southeast-directed extension.
ContributorsCoyan, Joshua (Author) / Reynolds, Stephen (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Chi, Michelene (Committee member) / Piburn, Michael (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
150543-Thumbnail Image.png
Description
The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces

The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces of gold remaining in several mineralized pods. Although exploration programs have been completed within the study area, the structural history and timing of precious-metal mineralization are still poorly understood. This study aims to better understand the relation between stratigraphy, structural setting, and style of gold mineralization. In order to accomplish these goals, geological mapping at a scale of 1:5,000 was conducted over the property as well as analysis of soil and rock chip samples for multi-element geochemistry. Using cross-cutting relationships, the structural history of Kinsley Mountain has been determined. The deformation can broadly be categorized as an early stage of compressional tectonics including folding, attenuation of the stratigraphy, and thrust faulting. This early stage was followed by a series of extensional deformation events, the youngest of which is an ongoing process. The structural history determined from this study fits well into a regional context and when viewed in conjunction with the mineralization event, can be used to bracket the timing of gold mineralization. The northwest oriented structure responsible for concentrating decalcification, silicification, and mineralization has two generations of cave fill breccias that both pre- and post-date the gold event. The statistical analysis of multi-element geochemistry for rock chip and soil samples has determined that Au is most strongly associated with Te, while weaker correlations exist between Au and Ag, As, Hg, Mo, Sb, Tl, and W. This suite of elements is associated with an intrusion driven system and is atypical of Carlin-type gold systems. From these elemental associations the gold mineralization event is thought to be controlled by the emplacement of a felsic intrusion. The responsible intrusion may be an exposed quartz monzonite to the south of the study area, as suggested by possible zonation of Cu, Pb, and Zn, which decrease in concentration with increasing distance from the outcropping stock. Alternatively, an unexposed intrusion at depth cannot be ruled out as the driver of the mineralizing system.
ContributorsMacFarlane, Bryan (Author) / Reynolds, Stephen (Thesis advisor) / Hervig, Richard (Committee member) / Burt, Donald (Committee member) / Arizona State University (Publisher)
Created2012
156594-Thumbnail Image.png
Description
Aquifers host the largest accessible freshwater resource in the world. However, groundwater reserves are declining in many places. Often coincident with drought, high extraction rates and inadequate replenishment result in groundwater overdraft and permanent land subsidence. Land subsidence is the cause of aquifer storage capacity reduction, altered topographic gradients which

Aquifers host the largest accessible freshwater resource in the world. However, groundwater reserves are declining in many places. Often coincident with drought, high extraction rates and inadequate replenishment result in groundwater overdraft and permanent land subsidence. Land subsidence is the cause of aquifer storage capacity reduction, altered topographic gradients which can exacerbate floods, and differential displacement that can lead to earth fissures and infrastructure damage. Improving understanding of the sources and mechanisms driving aquifer deformation is important for resource management planning and hazard mitigation.

Poroelastic theory describes the coupling of differential stress, strain, and pore pressure, which are modulated by material properties. To model these relationships, displacement time series are estimated via satellite interferometry and hydraulic head levels from observation wells provide an in-situ dataset. In combination, the deconstruction and isolation of selected time-frequency components allow for estimating aquifer parameters, including the elastic and inelastic storage coefficients, compaction time constants, and vertical hydraulic conductivity. Together these parameters describe the storage response of an aquifer system to changes in hydraulic head and surface elevation. Understanding aquifer parameters is useful for the ongoing management of groundwater resources.

Case studies in Phoenix and Tucson, Arizona, focus on land subsidence from groundwater withdrawal as well as distinct responses to artificial recharge efforts. In Christchurch, New Zealand, possible changes to aquifer properties due to earthquakes are investigated. In Houston, Texas, flood severity during Hurricane Harvey is linked to subsidence, which modifies base flood elevations and topographic gradients.
ContributorsMiller, Megan Marie (Author) / Shirzaei, Manoochehr (Thesis advisor) / Reynolds, Stephen (Committee member) / Tyburczy, James (Committee member) / Semken, Steven (Committee member) / Werth, Susanna (Committee member) / Arizona State University (Publisher)
Created2018
Description
The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and

The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and preferred rupture propagation direction. Results include greater damage intensity within stiffer material and preferred slip in the direction of the more compliant side of the fault. Data from a dense seismic array along the Clark strand of the SJFZ at Sage Brush Flat (SGB) near Anza, CA, allows for analysis and characterization of shallow (<1km depth) seismic structure and fault zone properties. Results indicate potential asymmetric rock damage at SGB, similar to findings elsewhere along the SJFZ suggesting an NW preferred rupture propagation.

In this study, analysis of high resolution topography suggests asymmetric morphology of the SGB basin slopes are partially attributed to structural growth and fault zone damage. Spatial distributions of rock damage, from site mapping and fault perpendicular transects within SGB and Alkali Wash, are seemingly asymmetric with pulverization dominantly between fault strands or in the NE fault block. Remapping of the SJFZ through Alkali Wash indicates the fault is not isolated to a single strand along the main geologic boundary as previously mapped. Displacement measurements within SGB are analogous to those from the most recent large earthquake on the Clark fault. Geologic models from both a 3D shear wave velocity model (a product from the dense seismic array analysis) and lithologic and structural mapping from this study indicate surface observations and shallow seismic data compare well. A synthetic three-dimensional fault zone model illustrates the complexity of the structure at SGB for comparison with dense array seismic wave products. Results of this study generally agree with findings from seismic wave interpretations suggesting damage asymmetry is controlled by a NW preferred rupture propagation.
ContributorsWade, Adam Micahel (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2018
134620-Thumbnail Image.png
Description
This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the transition to the Hermit Formation in Sedona, if possible. To

This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the transition to the Hermit Formation in Sedona, if possible. To accomplish this, we use field observations and detrital zircon dating techniques to compare data we collected in Sedona with data previously published for the Grand Canyon. Fossil evidence in Sedona and near Payson, Arizona is also used to aid correlation. Starting from the Grand Canyon, the Hermit Formation pinches out to the southeast and, hypothetically obstructed by the Sedona Arch, does not reach Sedona. Detrital zircon data show similar age distributions between the Grand Canyon and Sedona rock units, but the results are not strong enough to confidently correlate units between these two localities. The data collected for this study suggest that if the Hermit Formation is present in Sedona, it is limited to higher up in the section as opposed to occupying the middle portion of the section as is currently interpreted. To determine with greater accuracy whether the Hermit Formation does exist higher in the section of Sedona, more detrital zircons should be collected and analyzed from the part of the section that yielded a relative increase in young zircons aged 200-600 Ma.
ContributorsFinger, Mikayla (Co-author) / Spitzer, Patrick (Co-author) / Reynolds, Stephen (Thesis director) / Semken, Steven (Committee member) / DeVecchio, Duane (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135035-Thumbnail Image.png
Description
For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns

For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns over two years (2013-2014) were interviewed prior to the start of their internship, after their internship, and after presenting their research at the American Geophysical Union annual meeting. This internship program is of particular interest because many of the interns come into the REU with non-geoscience or geophysics backgrounds (e.g., physics, mathematics, chemistry, engineering). Both a priori and emergent codes are used to convert interview transcripts into quantitative data, which is analyzed alongside demographic information to understand how the REU influences their decisions. Increases in self-efficacy and exposure to multiple facets of geoscience research are expressed as primary factors that help shape their future educational and career goals. Other factors such as networking opportunities and connections during the REU also can play a role in their decision. Overall, REU participants who identified as geosciences majors solidified their decisions to pursue a career in geosciences, while participants who identified as non-geosciences majors were inclined to change majors, pursue geosciences in graduate school, or explore other job opportunities in the geosciences.
ContributorsGossard, Trey Marshall (Author) / Semken, Steven (Thesis director) / Garnero, Edward (Committee member) / Reynolds, Stephen (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153742-Thumbnail Image.png
Description
ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of

ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of 21+ volcanic centers, primarily low shield volcanoes ranging from 4-6 km in diameter and 30-200 m in height. The SAVF represents plains-style volcanism, an emplacement style and effusion rate intermediate between flood volcanism and large shield-building volcanism. Because of these characteristics, SAVF is a good analogue to small-volume effusive volcanic centers on Mars, such as those seen the southern flank of Pavonis Mons and in the Tempe Terra region of Mars. The eruptive history of the volcanic field is established through detailed geologic map supplemented by geochemical, paleomagnetic, and geochronological analysis.

Paleomagnetic analyses were completed on 473 oriented core samples from 58 sites. Mean inclination and declination directions were calculated from 8-12 samples at each site. Fifty sites revealed well-grouped natural remanent magnetization vectors after applying alternating field demagnetization. Thirty-nine sites had reversed polarity, eleven had normal polarity. Fifteen unique paleosecular variation inclination and declination directions were identified, six were represented by more than one site with resultant vectors that correlated within a 95% confidence interval. Four reversed sites were radiometrically dated to the Matuyama Chron with ages ranging from 1.08 ± 0.15 Ma to 2.37 ± 0.02 Ma; and one normal polarity site was dated to the Olduvai normal excursion at 1.91 ± 0.59 Ma. Paleomagnetic correlations within a 95% confidence interval were used to extrapolate radiogenic dates. Results reveal 3-5 eruptive stages over ~1.5 Ma in the early Pleistocene and that the SAVF dammed and possibly diverted the lower Gila River multiple times. Preliminary modeling of the median clast size of the terrace deposits suggests a maximum discharge of ~11300 cms (~400,000 cfs) was necessary to transport observed sediment load, which is larger than the historically recorded discharge of the modern Gila River.
ContributorsCave, Shelby Renee (Author) / Clarke, Amanda (Thesis advisor) / Burt, Donald (Committee member) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2015