Matching Items (54)
Filtering by

Clear all filters

154347-Thumbnail Image.png
Description
One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low

One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they lack the critical secondary-shell interactions that enable the active site of enzymes to outperform their organometallic counterparts.

To address these challenges, my work utilizes bio-hybrid systems in which artificial proteins are used to modulate the properties of organometallic catalysts. This approach couples the diversity of organometallic function with the robust nature of protein biochemistry, aiming to utilize the protein scaffold to not only enhance rates of reaction, but also to control catalytic cycles and reaction outcomes. To this end, I have used chemical biology techniques to modify natural protein structures and augment the H2 producing ability of a cobalt-catalyst by a factor of five through simple mutagenesis. Concurrently I have designed and characterized a de novo peptide that incorporates various iron sulfur clusters at discrete distances from one another, facilitating electron transfer between the two. Finally, using computational methodologies I have engineered proteins to alter the specificity of a CO2 reduction reaction. The proteins systems developed herein allow for study of protein secondary-shell interactions during catalysis, and enable structure-function relationships to be built. The complete system will be interfaced with a solar fuel cell, accepting electrons from a photosensitized dye and storing energy in chemical bonds, such as H2 or methanol.
ContributorsSommer, Dayn (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2016
157775-Thumbnail Image.png
Description
Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for

Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for microbial, long-range electron transfer. Geobacter sulfurreducens has been hypothesized to secrete and use riboflavin as a soluble, extracellular redox shuttle in conjunction with multi-heme, outer membrane, c-type cytochromes, but the required proteins and their properties have not been defined. To address the mechanism of extracellular electron transfer by G. sulfurreducens, the first part of this work explores the interaction between an outer membrane, octaheme, c-type cytochrome OmcZs from G. sulfurreducens and riboflavin. Interrogation via multiple physical techniques shows that OmcZs transfers electrons to riboflavin. By analogy to other characterized systems, riboflavin then likely interacts with extracellular acceptors directly. The second part of this work addresses the mechanisms of EET by the model cyanobacterium Synechocystis sp. PCC 6803. It has been hypothesized that Synechocystis employs conductive pili for production of extracellular current. However, the results herein show that a strain that does not have pili produces extracellular photocurrent in a direct electrochemical cell at a level similar to that by wild type cells. Furthermore, conductive atomic force microscopy (AFM) imaging is used to show that pili produced by the wild type organism are not conductive. Thus, an alternative EET mechanism must be operable. In the third part of this work, a supramolecular structure comprised of peptide and cytochromes designed to serve as a model for long-range electron transfer through cytochrome rich environments is described. The c-type cytochromes in this synthetic nanowire retain their redox activity after assembly and have suitable characteristics for long-range electron transfer. Taken together, the results of this dissertation not only inform on natural microbial mechanisms for EET but also provide a starting point to develop novel, synthetic systems.
ContributorsThirumurthy, Miyuki (Author) / Jones, Anne K (Thesis advisor) / Redding, Kevin (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2019
161707-Thumbnail Image.png
Description
Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to

Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to capture the complex network of molecular interactions presented in various biological states such as disease or cancer. Aptamers and enriched libraries have vast applications in bio-sensing, therapeutics, targeted drug delivery, biomarker discovery, and assay development. Here I describe a novel method of computational biophysical characterization of molecular interactions between a single aptamer and its cognate target as well as an alternative to next generation sequencing (NGS) as a readout for a SELEX-based assay. I demonstrate the capability of an artificial neural network (ANN) trained on the results of screening an aptamer against a random sampling of a combinatorial library of short synthetic 11mer peptides to accurately predict the binding intensities of that aptamer to the remainder of the combinatorial space originally sampled. This machine learned comprehensive non-linear relationship between amino acid sequence and aptamer binding to synthetic peptides can also make biologically relevant predictions for probable molecular interactions between the aptamer and its cognate target. Results of SELEX-based assays are determined by quantifying the presence and frequency of informative species after probing patient specimen. Here I show the potential of DNA microarrays to simultaneously monitor a pool of informative sequences within a diverse library with similar variability and reproducibility as NGS.
ContributorsLevenberg, Symon (Author) / Woodbury, Neal (Thesis advisor) / Borges, Chad (Committee member) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
132025-Thumbnail Image.png
Description
As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that

As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that is proteolytically cleaved from the type I transmembrane glycolytic amyloid precursor protein (APP). APP is highly conserved across species, suggesting the importance of APP in healthy brain functioning. However, when APP is cleaved through the amyloidogenic pathway it produces amyloid beta. The trafficking of APP within neurons has been a new endeavor for neurodegenerative disease research, as reduced retrograde trafficking of APP has been hypothesized to increase the likelihood of the amyloidogenic cleavage of APP, resulting in increased amyloid beta presence (Ye et al., 2017). The findings of this study suggest that transport of APP within neurons is significantly inhibited by increased extracellular glutamate concentration. The addition of human primary astrocytes within a human neuron co-culture allowed for significantly increased retrograde transport of APP within neurons, even within high glutamate conditions. These finding enhance the current field of research regarding astrocytes neuroprotective role within the brain, but bring attention to the role that astrocytes have upon regulation of the axonal transport of proteins within neurons.
ContributorsKlosterman, Katja Elisabeth (Author) / Ros, Alexandra (Thesis director) / Redding, Kevin (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132373-Thumbnail Image.png
Description
The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous

The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous production of photobiohydrogen in the green alga, Chlamydomonas reinhardtii. Experiments utilizing an artificial PSII electron
Therefore, it can be concluded that downstream processes are limiting the electron flow to the hydrogenase. It was also shown that the use of a PSII inhibitor, 3-(3,4-dichlorophenyl)-1,1- dimethylurea (DCMU), at sub-saturating concentrations under light exposure during growth temporarily improves the duration of the H2 evolution phase. The maximal hydrogen production rate was found to be approximately 32 nmol h-1 (µg Chl)-1. Although downregulation of PSII activity with DCMU improves the long-term hydrogen production, future experiments must be focused on improving oxygen tolerance of the hydrogenase as a means for higher hydrogen yields.
ContributorsO'Boyle, Taryn Reilly (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Vermaas, Willem (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131767-Thumbnail Image.png
Description
The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is

The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for cytochrome c553 other than the photosynthetic reaction center. Therefore, it was hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. Under this hypothesis, a mutant of H. modesticaldum lacking the cytochrome bc complex was predicted to be viable, but non-phototrophic. In this project, a two-step method for CRISPR-based genome editing was used in H. modesticaldum to delete the genes encoding the cytochrome bc complex. Genotypic analysis verified the deletion of the petC, B, D, and A genes encoding the catalytic components of complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was ~130 to 190 times slower in the ∆petCBDA mutant compared to wildtype, phenotypically confirming the removal of the cytochrome bc complex. The resulting ∆petCBDA mutant was unable to grow phototrophically, instead relying on pyruvate metabolism to grow chemotrophically as does wildtype in the dark.
ContributorsLeung, Sabrina (Author) / Redding, Kevin (Thesis director) / Liu, Wei (Committee member) / Vermaas, Wim (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
166148-Thumbnail Image.png
Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco) is responsible for the majority of carbon fixation and is also the least efficient enzyme on Earth. Rubisco assists 1,5-ribulose bisphosphate (RuBP) in binding CO2, however CO2 and oxygen have similar binding affinities to Rubisco, resulting in a low enzymatic efficiency. Rubisco activase (Rca) is an

Ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco) is responsible for the majority of carbon fixation and is also the least efficient enzyme on Earth. Rubisco assists 1,5-ribulose bisphosphate (RuBP) in binding CO2, however CO2 and oxygen have similar binding affinities to Rubisco, resulting in a low enzymatic efficiency. Rubisco activase (Rca) is an enzyme that removes inhibiting molecules from Rubisco’s active sites, promoting the Rubisco activity. The binding of Rubisco and Rca stimulates a high-rate of carbon fixation and lowers the overall CO2 concentration in the atmosphere. To study the interaction between the two complexes, Rubisco was extracted from baby spinach (Spinacia oleracea) and purified using anion-exchange chromatography and size-exclusion chromatography. Rca was designed to use a recombinant gene and overexpressed in Escherichia coli (E. coli). The purified proteins were verified using SDS-PAGE. The two proteins were assembled in vitro and the interaction of the protein complex was stabilized using glutaraldehyde cross-linking. The samples were then deposited on a carbon-coated electron microscopy (EM) grid, stained with uranyl formate, and observed under a transmission electron microscope (TEM). The ultimate goal is to image the specimen and reconstruct the structure of the protein complex at high resolution.
ContributorsHart, Hayden (Author) / Chiu, Po-Lin (Thesis director) / Redding, Kevin (Committee member) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Military Science (Contributor)
Created2022-05