Matching Items (13)
Filtering by

Clear all filters

134932-Thumbnail Image.png
Description
This thesis focuses on the effects of an engine's induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems

This thesis focuses on the effects of an engine's induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems outside the engine, as finding substantial gains via this method negates the need to alter engine architectures, potentially saving manufacturers research and development costs. The ultimate goal was to determine the feasibility of modifying induction and exhaust systems to increase fuel efficiency via reduction of engine pumping losses and increase in volumetric efficiency, with the hope that this research can aid others researching engine design in both educational and commercial settings. The first step toward achieving this goal was purchasing a test vehicle and performing experimental fuel efficiency testing on the unmodified, properly serviced specimen. A test route was devised to provide for a well-rounded fuel efficiency measurement for each trial. After stock vehicle trials were completed, the vehicle was to be taken out of service for a turbocharger system installation; unfortunately, challenges arose that could not be rectified within the project timeframe, and this portion of the project was aborted, to be investigated in the future. This decision was made after numerous fitment and construction issues with prefabricated turbo conversion parts were found, including induction and exhaust pipe size problems and misalignments, kit component packaging issues such as intercooler dimensions being too large, as well as manufacturing oversights, like failure to machine flanges flat for sealing and specification of incorrect flange sizes for mating components. After returning the vehicle to stock condition by removing the partially installed turbocharger system, the next step in the project was then installation of high-flow induction and exhaust systems on the test vehicle, followed by fuel efficiency testing using the same procedure as during the first portion of the experiment. After analysis of the quantitative and qualitative data collected during this thesis project, several conclusions were made. First, the replacement of stock intake and exhaust systems with high-flow variants did make for a statistically significant increase in fuel efficiency, ranging between 10 and 20 percent on a 95% confidence interval. Average fuel efficiency of the test vehicle rose from 21.66 to 24.90 MPG, an impressive increase considering the relative simplicity of the modifications. The tradeoff made was in noise produced by the vehicle; while the high-flow induction system only resulted in increased noise under very high-load circumstances, the high-flow exhaust system created additional noise under numerous load conditions, limiting the market applicability for this system. The most ideal vehicle type for this type of setup is sports/enthusiast cars, as increased noise is often considered a desirable addition to the driving experience; light trucks also represent an excellent application opportunity for these systems, as noise is not a primary concern in production of these vehicles. Finally, it was found that investing in high-flow induction and exhaust systems may not be a wise investment at the consumer level due to the lengthy payoff period, but for manufacturers, these systems represent a lucrative opportunity to increase fuel efficiency, potentially boosting sales and profits, as well as allowing the company to more easily meet federal CAFE standards in America. After completion of this project, there are several further research directions that could be taken to expand upon what was learned. The fuel efficiency improvements realized by installing high-flow induction and exhaust systems together on a vehicle were experimentally measured during testing; determining the individual effects of each of these systems installed on a vehicle would be the next logical research step within the same vein. Noise, vibration, and harshness increases after installing these systems were also noticed during experimental trials, so another future research direction could be an investigation into reducing these unwanted effects of high-flow systems. Finally, turbocharging to increase a vehicle's fuel efficiency, the original topic of this thesis, is another very important, contemporary issue in the world of improving vehicle fuel efficiency, and with manufacturers consistently moving toward turbocharged platform development, is a prime research topic in this area of study. In conclusion, the results from this thesis project exhibit that high-flow induction and exhaust systems can substantially improve a vehicle's fuel efficiency without modifying any internal engine components. This idea of improving a vehicle's fuel economy from outside the engine will ideally be further researched, such as by investigating turbocharger systems and their ability to improve fuel efficiency, as well as be developed and implemented by others in their educational projects and commercial products.
ContributorsCurl, Samuel Levi (Author) / Trimble, Steven (Thesis director) / Takahashi, Timothy (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05