Matching Items (45)
Filtering by

Clear all filters

151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
152745-Thumbnail Image.png
Description
There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed

There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.
ContributorsHeitzman, Nicholas (Author) / Takahashi, Timothy T (Thesis advisor) / Wells, Valana (Thesis advisor) / Feigh, Karen (Committee member) / Arizona State University (Publisher)
Created2014
150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
ContributorsShortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2011
150410-Thumbnail Image.png
Description
A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural

A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an affordable dedicated small-satellite launch vehicle relies upon a combination of expendable medium-range military surplus solid rocket motor assets. The dissertation discusses in detail the current operational capabilities of these military boosters and provides an outline for necessary refurbishments required to successfully place a small payload in orbit. A custom 3DOF trajectory script is used to evaluate the performance of these designs. Concurrently, a parametric cost-mass-performance response surface methodology is employed as an optimization tool to minimize life cycle costs of the proposed vehicles. This optimization scheme is centered on reducing life cycle costs per payload mass delivered rather than raw performance increases. Lastly, a novel upper-stage engine configuration using Hydroxlammonium Nitrate (HAN) is introduced and experimentally static test fired to illustrate the inherent simplicity and high performance of this high density, nontoxic propellant. The motor was operated in both pulse and small duration tests using a newly developed proprietary mixture that is hypergolic with HAN upon contact. This new propellant is demonstrated as a favorable replacement for current space vehicles relying on the heritage use of hydrazine. The end result is a preliminary design of a vehicle built from demilitarized booster assets that complements, rather than replaces, traditional space launch vehicles. This dissertation proves that such capabilities exist and more importantly that the resulting architecture can serve as a viable platform for immediate and affordable access to low Earth orbit.
ContributorsVillarreal, James Kendall (Author) / Squires, Kyle (Thesis advisor) / Lee, Taewoo (Committee member) / Shankar, Praveen (Committee member) / Sharp, Thomas (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
150982-Thumbnail Image.png
Description
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
ContributorsDickeson, Jeffrey James (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Wells, Valana (Committee member) / Kawski, Mattias (Committee member) / Arizona State University (Publisher)
Created2012
136658-Thumbnail Image.png
Description
The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases

The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases of a double-bladed and single-bladed rotor have been run to investigate the causes and types of wake instabilities, as well as compare them to the short wave, long wave, and mutual inductance modes proposed by Widnall[2]. Evaluation of results revealed several perturbations appearing in both single and double-bladed wakes, the origin of which was unknown and difficult to trace. This made the computations not directly comparable to theoretical results, and drawing into question the physical flight conditions being modeled. Nonetheless, they displayed a wake structure highly sensitive to both computational and physical disturbances; thus extreme care must be taken in constructing grids and applying boundary conditions when doing wake computations to ensure results relevant to the complex and dynamic flight conditions of physical aircraft are generated.
ContributorsDrake, Nicholas Spencer (Author) / Wells, Valana (Thesis director) / Squires, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136525-Thumbnail Image.png
Description
The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.
ContributorsCook, Rachel Nicole (Author) / Dahm, Werner (Thesis director) / Lee, Taewoo (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
135838-Thumbnail Image.png
Description
In this paper, the impact of running a Best Value system in a student-run/volunteer group is measured, documented, and analyzed. The group being used for this test is the Arizona State University Society of Automotive Engineers Formula Team. The Arizona State University Society of Automotive Engineers Formula Team has participated

In this paper, the impact of running a Best Value system in a student-run/volunteer group is measured, documented, and analyzed. The group being used for this test is the Arizona State University Society of Automotive Engineers Formula Team. The Arizona State University Society of Automotive Engineers Formula Team has participated in national Formula SAE competitions since at least 1992, however, in the last twenty years, the team has only been able to produce one car that was able to finish the competition on time. In a similar time period, Best Value has been successfully tested on over 1860 professional projects with a 95% satisfaction rating. Using the Best Value approach to increase transparency and accountability through simple metrics and documentation, the 2016 Arizona State University Society of Automotive Engineers Formula Team was able to complete their car in 278 days. In comparison, it took 319 days for the 2015 team and 286 for the average collegiate team. This is an improvement of 13% when compared to the 2015 team and 3% when compared to the average collegiate team. With these results it can be deduced that the Best Value approach is a viable method for improving efficiency of student-run and volunteer organizations. It is the recommendation of this report that the Arizona State University Society of Automotive Engineers Formula Team continue to utilize Best Value practices and run this system again each year moving forward. This consistent documentation should result in continuous improvement in the time required to complete the car as well as its quality.
ContributorsWojtas, Thomas Samuel (Author) / Trimble, Steven (Thesis director) / Kashiwagi, Dean (Committee member) / Kashiwagi, Jacob (Committee member) / WPC Graduate Programs (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136400-Thumbnail Image.png
Description
The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to

The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to understand where the flaws might arise in their design method. 2. I then describe the key aspects of systems engineering design. This is the backbone of the method I am proposing, and it is important to understand the key concepts so that they can be applied to the FSAE design method. 3. I discuss what is available in the literature about race car design and optimization. I describe what other FSAE teams are doing and how that differs from systems engineering design. 4. I describe what the FSAE team at Arizona State University (ASU) should do to improve their approach to race car design. I go into detail about how the systems engineering method works and how it can and should be applied to the way they design their car. 5. I then describe how the team should implement this method because the method is useless if they do not implement it into their design process. I include an interview from their brakes team leader, Colin Twist, to give an example of their current method of design and show how it can be improved with the new method. This paper provides a framework for the FSAE team to develop their new method of design that will help them accomplish their overall goal of succeeding at the national competition.
ContributorsPickrell, Trevor Charles (Author) / Trimble, Steven (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05